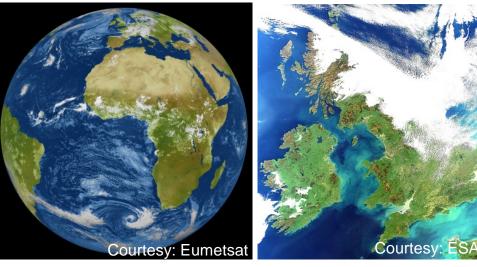


New Technologies for Future EO Instrumentation

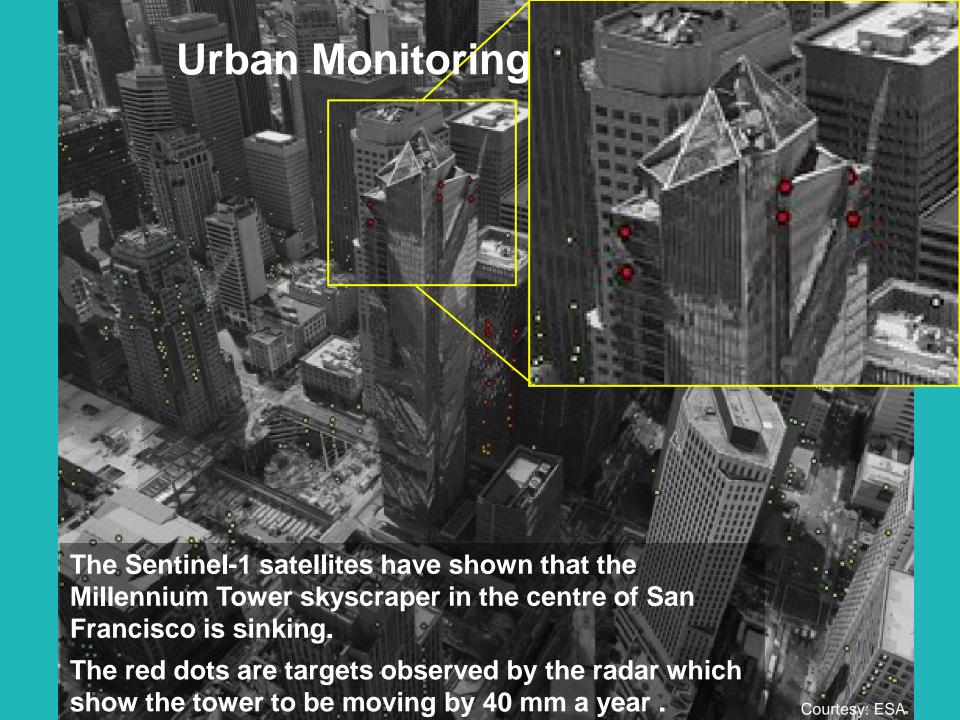
Mick Johnson

Director of CEOI

Monitoring the Earth from Space

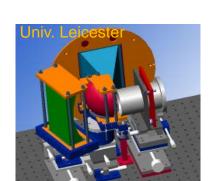


What data do EO satellites provide?


- Earth Observation science
- Operational services
 - Weather, climate
- Commercial EO services
 - Precision agriculture
 - Forestry
 - Maritime information

Current assets in Earth Observation

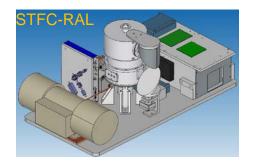
- ESA: Earth Explorer satellites
- Eumetsat: MeteoSat, MetOp
- EU Copernicus: Sentinel satellites
- Commercial EO satellites: TerraSAR-X, RapidEye, DMC, NovaSAR

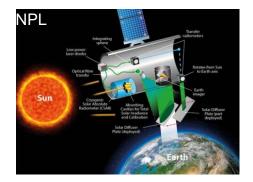


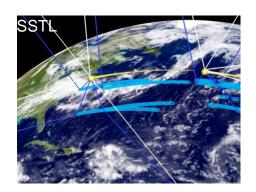
Objectives of the Centre

- UK Space Agency initiative to boost UK capability and remain at the forefront of EO technology for space
- Programme focus on:
 - Innovative EO instrumentation and technologies
 - Maturing technologies for future EO missions
 - Improved access to ESA missions
 - Focus on technologies for economic growth
- CEOI has managed and delivered more than £17M of technology projects over last 3 years
- Added Value programme of workshops and Technology Transfer
- Developing a new EO Technology Strategy
- Future funding opportunities

Delivered by the established CEOI partnership





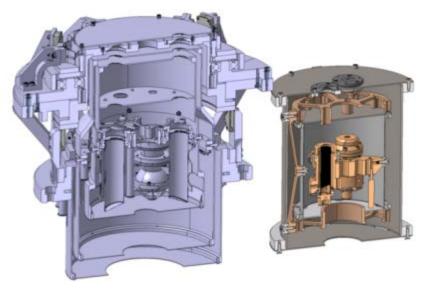

Developing technologies for future EO missions

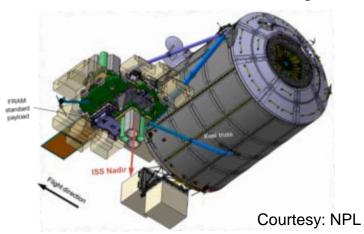
- UV/visible high resolution spectrometer
 - CompAQS instrument for air quality
- Advanced millimetre wave and TeraHz technologies
 - Microwave Sounder (MWS) for MetOp-2G
 - Development of LOCUS mission and technologies
- Climate and GHG Monitoring
 - In-orbit SI-traceable calibration (TRUTHS)
 - Technologies for CNES bilateral (MicroCarb)
- Advanced Radar Systems and Missions
 - Ocean currents and global winds
- > GNSS reflectometry for sea surface winds

CompAQS - Air Quality Spectrometer

Univ. Leicester, SSTL

- Quantification of air pollution (NO₂ & aerosols):
 - Map sub-urban concentrations
 - Constrain emission inventories to 50-100%
- > Achieved through:
 - High spatial and temporal resolution UV/optical spectrometer
 - Accurate retrievals to determine emission sources
- Development of compact optical spectrometer
 - System, optical and mechanical designs complete
 - Procurement almost complete, some optics to come
- ➤ Instrument build in progress, TVAC test and airborne demonstration in 2017




TRUTHS NPL and Airbus

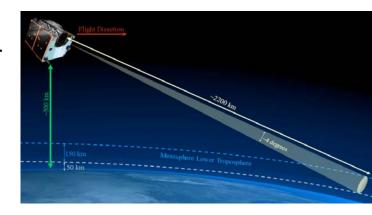
- Mission to provide benchmark measurements of incoming (solar) and outgoing (reflected solar) radiation
- Sufficient spectral resolution and accuracy to detect the subtle changes in climate within ~12 yr period
 - limited by natural variability of the climate system.
- Developing a lab demonstration of the Cryogenic Solar Absolute Radiometer and the in-flight calibration system
- Approaching end of manufacturing phase and entering integration and test phase.

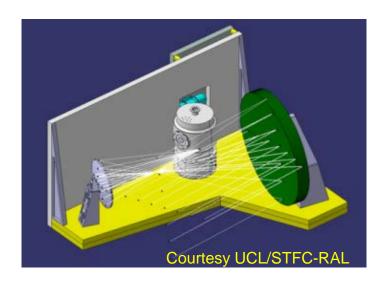
New low mass & volume CSAR design

LOCUS

UCL, STFC RAL, STAR Dundee, Univ. Leeds, Univ. Glyndwr/Huddersfield, JCR Systems

LOCUS mission objective


 to observe the Earth's Mesosphere and Lower Thermosphere (~50-180 km) using passive teraHz radiometry


Project objectives

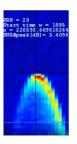
- o verify payload system performance
- reduce the payload power consumption,
- demonstrate its compatibility with the space environment

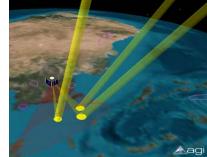
Work Content

- Design, construct and test in representative thermal environment of the LOCUS payload optics and support infrastructure
- Final stage is to characterise the end-to-end performance of the LOCUS payload.

Optical bench design

GNSS Reflectometry SSTL and NOC




- Instrument developed by SSTL
 - ➤ With support from CEOI & ESA
 - Flown on UK TechDemoSat-1, July 2014
- Measures GNSS signals scattered off ocean
 - Measure of sea roughness
 - => Estimate wind speed
 - Also reflections off soil and ice
 - Data available at <u>www.merrbys.org</u>
- ➤ Small instrument ~ 2 kg, 9 watts
- > NASA CYGNSS mission
 - Uses SGR-ReSI as payload
 - 8 satellites measuring winds inside hurricanes using GPS signals
 - Launch due 12th December 2016

Elements of a EO Technology Strategy

Markets

- Develop technologies in readiness for ESA and other institutional flight programmes
- Target high volume spacecraft opportunities, including operational series / constellations
- Mature technologies for commercial mission opportunities which are timely, low-cost and fit for purpose

Capability

- Strengthen established areas of UK capability
- Continue to encourage academic/industrial partnership to pull through innovation

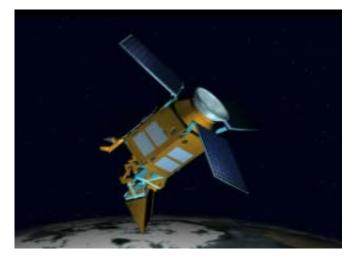
Implementation

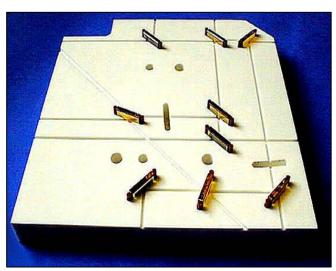
- Support development of future EO mission concepts
- Support airborne and IOD demonstrations

UK EO Capability

Technology Theme	Technology Lines of development	Organisations involved	Breakdown by type			
		Total	Industry	SME	Academic	Government
UV/Visible	22	13	3	1	6	3
Passive Microwave	27	16	2	6	6	2
Radar	19	9	3	1	3	2
IR	12	9	4	2	2	1
LIDAR	4	2	0	1	1	0
Support technologies	7	6	3	1	1	1

Next CEOI Technology Call




- The10th CEOI Call for EO Technologies will be released in December
- There will be 3 main themes:
 - New and innovative ideas for EO technology development
 - Achieving higher TRL through airborne demonstration
 - Development of EO CubeSat flight model payloads aimed at potential commercial services
- Up to £2M available, projects up to 18 months.
- The 11th CEOI Call is likely to be issued in mid-2017, with a focus on strategic objectives

Conclusion

- Exciting new programmes available
 - Major new opportunities in EO for ESA,
 Copernicus and commercial missions
- Continuing need for lower-cost, compact EO payloads.
- UK well placed to take a lead in many future missions
- CEOI programme is there to support UK EO instrument teams
- Next funding call released soon!
- Contact
 - mick.johnson@airbus.com
 - www.ceoi.ac.uk

