Science & Technology Facilities Council

Return to the Moon, and on to Mars

NASA committed to Return to the Moon.

- And a manned mission to Mars
- European Space Agency (ESA) is following suit with the 'AURORA Programme'.
- To land a European on Moon/Mars.

The problem of Astronaut protection

- Radiation from Sun and other Cosmic sources are hazardous to the astronauts.
- None have been outside the protection of Earth's Magnetosphere since Apollo..... and never for extended periods of time.

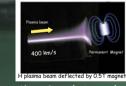
The radiation levels of Solar Proton Events that occurred during the Apollo

Shields for the Starship Enterprise The Mini Magnetospheres Program

Ruth Bamford*, Bob Bingham*, Mike Hapgood*, John Bradford*, Richard Stamper*, Luis Gargate*†, Luis Silvat, Carol Norberg×, Kieran Gibson≠¥, Tom Todd*\$*, Howard Wilson¥

*Space Science & Technology Dept, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX †Centro de Física dos Plasmas, Instituto Superior Técnico, 1049-001 Lisboa, PORTUGAL. × Umea University, Box 812, 981 28 Kiruna,Sweden. * University of York, Heslington, York, YOIO 5DD ‡University of Manchester, Sackwille Street Building, Manchester, M60 1QD § EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, U.K.

ector ini-Magnetospheres


"Raise shields Scotty!"

 Plasma barrier created that deflects ionised particles of the solar wind

Experiments in the lab

 The technology being development for magnetically confined fusion can be used to develop a plasma shield.

Above is a photograph of the plasma beam being deflected asymmetrically by the magnetic field of a magnet.

In summary

- This is perhaps THE big problem for man to 'boldly go' into the solar system. It is a show stopper if not solved. The idea of using an artificial magnetosphere around a space
- craft is not new
- But only now is the technology to make a mini-mag becoming a practical possibility.
- Time to step up the pace and put computer model and experiment together
- The primary aim of the RAL project is to determine the physics & engineering feasibility of a space craft sized plasma shield.
- A secondary question is the possibility of mini-magnetosphere ...But that is another plasma story...

How does it work? The physics behind the plasma shield

Plasma shield

A plasma has very high

The electrons and ions

of the plasma 'barrier'

react to the impinging

electric field to try to

behave *collectively* and

cancel the field out.

By nature, plasmas

only relatively small

adjustments by many

needed to cancel the

dHybrid shows plasma deflected

Above is the results

a permanent magnet

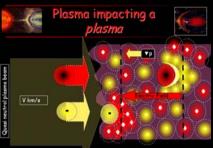
"cavity" of excluded

A space craft in this

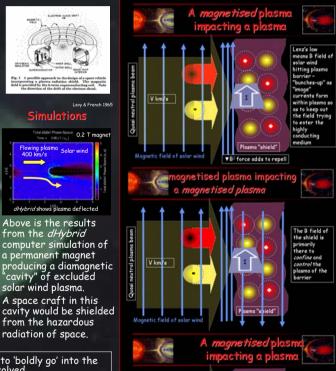
from the hazardous

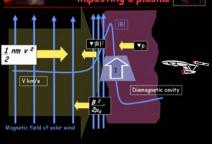
radiation of space.

solar wind plasma.


computer simulation of

from the *dHybrid*


individual particles are


impinging electric field.

conductivity.

Ions & electrons have same charge but very different mass Ions are stopped by the ELECTRIC field created by charge separation

For more information

Contact: R.Bamford@rl.ac.uk 01235 44 6517

27 HE 10 10 11 12 13 14 15 101

• If man is to go into space to stay then it is essential some means of protection from radiation is developed.

• The Earth is protected from much of the hazardous radiation by the action of the magnetosphere.

Finding a solution

- Why not borrow an idea from nature and bring a magnetosphere with you?
- A small artificial magnetic "bubble" around the space craft could act in the same way as the natural one around the Earth.
- But if it is small can we still get it to work?
- Is the engineering feasible?

Modelling the physics • For boundary interaction on scale of

- MHD -plasma is just a magnetised fluid
- Rather like liquid mercury • Great at big picture but misses
- kinetics

å

• *dHybrid* - is a PIC code & has *both* hybrid of fluid and particle code. Why not use a metal shield? asma impacting material shield

to use particle kinetics.

Computationally demanding

The luck of Apol