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Very High Mach-Number Electrostatic Shocks in Collisionless Plasmas
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The kinetic theory of collisionless electrostatic shocks resulting from the collision of plasma slabs with
different temperatures and densities is presented. The theoretical results are confirmed by self-consistent
particle-in-cell simulations, revealing the formation and stable propagation of electrostatic shocks with
very high Mach numbers (M >> 10), well above the predictions of the classical theories for electrostatic

shocks.
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The collision of clouds of plasma with different proper-
ties (temperature, density, composition, etc.) is a scenario
quite common in nature. For instance, during supernovae
explosions, large quantities (10 solar masses) of high tem-
perature plasma (7 ~ 10-108 K) are ejected into the in-
terstellar medium (n ~ 1 cm™3, T ~ 10>-10* K) [1,2],
and plasma cloud collisions are at the core of the fireball
model for gamma ray bursters [3]. Plasma cloud collisions
also occur when the solar wind interacts with the Earth
magnetosphere, or when it encounters the interstellar me-
dium in the heliosphere region [4]. In the laboratory, such
scenarios appear during the laser induced compression of
plasma foils in solid targets [5].

The collision of plasma shells leads to the onset of
plasma instabilities and to the development of nonlinear
structures, such as solitons, shocks, and double layers [6].
In the absence of an ambient magnetic field, the shock
waves are electrostatic [7,8], and the dissipation is pro-
vided by the population of electrons trapped beyond the
shock [6,9] and, for stronger shocks, by the ion reflection
from the shock front [10]. While the properties of shocks
induced by collision of identical plasma shells, or by
compression of plasma clouds, have been extensively
studied in the past [5—14], the properties of the electrostatic
shock waves formed during the collision of diverse plasma
slabs of arbitrary temperature and density are rather unex-
plored [15]. The theory for electrostatic shocks induced by
impact of identical plasma shells predicts an absolute
maximum Mach number M,,, = 3 (or, when ion reflection
and thermal effects are included, M}, = 6). However,
collisionless shock waves with Mach numbers ranging
between 10 and 10° have been observed in many astro-
physical scenarios [1], and very large Mach-number cos-
mic shock waves are thought to play a crucial role in the
evolution of the large scale structure of the Universe
[16,17].

In this Letter, we present a kinetic theory describing the
properties of the very high Mach number (M > 10) lam-
inar shock waves arising from the collision of slabs of
plasma with different properties (temperatures, densities),
and in the absence of an ambient magnetic field. We
demonstrate that the shock properties are strongly influ-
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enced by O, the ratio of the electron temperatures in the
two slabs, and by Y, the ratio of the electron densities in
the two slabs. The analysis shows that when the electron
temperature T, of the downstream slab (R) is higher than
the electron temperature 7,; of the upstream slab (L), the
shock waves can have very large Mach numbers, which are
otherwise not supported by isothermal plasmas [6—8]. The
model predicts that the maximum allowed Mach number
increases with ®, without an absolute upper limit. The
theoretical results are confirmed by one-dimensional
(1D) self-consistent particle-in-cell simulations, demon-
strating the formation and the stable propagation of elec-
trostatic shock waves with very large Mach numbers
(M ~ 20).

The shock transition region is modeled as a planar one-
dimensional double layer, which is stationary in the refer-
ence frame of the shock; the electrostatic potential in-
creases monotonically from ¢ = 0 at x = x; to ¢ = ¢,
at x = xg, as shown in Fig. 1. The one-dimensional treat-
ment should hold for propagation distances smaller than
the transverse dimension of the shock. The structure of the
double layer is maintained by two populations of free
electrons (from the L and R slabs), a population of trapped
electrons (from the R slab), and a population of cold ions.
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FIG. 1. Geometry of the collisionless laminar shock wave. The
bold line represents the electrostatic potential. The electrons
from the slab L move freely, while the electrons from the slab
R can be either free or trapped. The ions flow towards the shock,
and are decelerated by the potential.
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The model considers the contribution of the trapped parti-
cles self-consistently, by treating the electrons in a kinetic
fashion [6,7]. To maintain a steady state, the number of
electrons in unit time dt, with velocity between [v,, v, +
dv,] and position between [x, x + dx], must balance the
electrons injected from the left slab (L), at x = x;, with
velocity between [v,, v; + dv; ], and the electrons from
the right slab (R), at x = xp, with velocity between
[vg, vg + dvg]. We can express the electron distribution
function f,(x, v,), at any given point x, as a function of the
electrons injected at the left and right boundaries, which
follow known distribution functions. The electron velocity,
which results from conservation of energy, can be written
as v, = \/v% + % = —\/v%e + 728(‘?11:‘750), depending on
whether the particles are arriving from the left boundary
or from the right boundary; here m, is the electron mass,
and e is the elementary charge. Assuming that only elec-
trons with positive velocity enter from the slab L, and only
electrons with negative velocity enter from the slab R, we
obtain

v © y 0
fe(xr ve)dve = v_LfL(vL)dUL 0 + U—RfR(UR)dUR ,

)

where f;(v;) and fr(vg) are the electron distribution
function in the L and R slabs. We assume that the electrons
in the L slab follow the drifting Maxwell-Boltzmann (MB)

distribution function [6] f,(v;) = %(“’L*Vr‘)z/ Vie,
TeL

and we consider that the electron thermal velocity V., =

VkgT,,/m, is greater than the shock speed V;. Here
kg is the Boltzmann constant, while 7,, and N, are
the electron temperature and density in the slab «. In
the R slab, the electrons are affected by the potential ¢,
and their distribution function is composed of a free
and a trapped part, fr(vg) = frr(vg) + fr,(vg). If their
kinetic energy is larger than the electrostatic energy (i.e.,
lvg| > |v,.| = |2qu50 ), they are free, and continuously

m

decelerate while moving towards the left boundary.
Following [6,7], we assume that the free electrons can
be modeled by the distribution function fgr(vg) =

%e‘”i/ Viet(edo)/(ksTer)  The electrons with kinetic
TeR

energy lower than the electrostatic energy (i.e., |vg| <

|v.|) are trapped, and are assumed to follow the flat-

top distribution function fg,(vg) = v N"\’}z—ﬁ. This idea of
TeR

describing an electron gas, composed of free and trapped
particles, by using a MB distribution function with a
flattop, has been widely used in the past to model station-
ary ion acoustic structures [6-8,12], and it is called
“maximum-density-trapping”’ approximation [6,9].

The density of electrons along the shock can be calcu-
lated by integrating the electron distribution function
fe(x,v,) in velocity space. Following Eq. (1), we can
separate the electron density along the shock in the con-
tributions from the L and R slabs. The density of the

electrons coming from the slab L can be written as
ny (o) = %e“’ErfC\/—, where ¢ = % In our model,
the electrons coming from the region L are continuously
accelerated while moving towards the right boundary, and
are not reflected or trapped by the electrostatic potential.
The density of electrons from the slab R is obtained using
Eq. (1), integrating the term containing the free electron
distribution, fgs(vg), in the range [—oo, —v ], and the
term containing the trapped electron distribution,
fr(vg), in the range [—wv, 0], leading to ng(p)=

NOTLYeW@Erfc,/(p/@) +%J¢/@, where Y = Nyg/Ny.

is the density ratio.

In the present model, the ions are cold, flowing towards
the shock with velocity V;, and being continuously decel-
erated by the electrostatic potential. The ion density is
determined by considering the energy and the mass con-
servation equations [13], and can be written as n; =

No/(J1 —2¢/M?), where M = V,/V, is the ion acoustic
Mach number, V, = /kzT,; /m; is the ion sound speed, m;
is the ion mass, and N, is the unperturbed ion density in the
slab L. The reflection of ions is not included in the present
model. Such assumption is consistent with a double layer
solution maintained by a population of trapped electrons
[6,9]. The aim of this Letter is to show that the collision of
plasma slabs, with appropriate temperature and density
ratios, leads to shock waves with very large Mach numbers.
Since the occurrence of ion reflection increases even fur-
ther the velocity of the shocks, the conclusions of this
Letter are to be considered as conservatives.

In the derivation of the ion and electron densities, we
used the quantities Nyg, Noz, and Ny, which can now be
evaluated by applying boundary conditions proper of
double layers [6,9]. Using charge neutrality at x = x;
and at x = xp, we obtain the conditions Ny = Ny, + Ngg
and ngz(@q) + n;(@g) = n;(¢g), thus leading to Ny; and
Nyr as a function of the unperturbed ion density N,, of
the normalized potential ¢, and of the Mach number M.
Since it is clear that the electron distribution functions are
always positive, we must apply the physical inequalities
N OL> N OR > O

By combining the ion and electron densities with
Poisson’s equation, and since the dynamics of the electro-
static potential is analogous to the motion of a particle in a
potential well W, we find that the evolution of the electro-
static potential is governed by %(g—)“;)z + W(p) =0 [18],
where the spatial coordinate, y, is normalized to the elec-

tron Debye length A, = \/kgT,./4me’N,, and the non-

linear Sagdeev potential [10] is

Here P,(¢,0,Y) = P(p,0,Y) — P(¢ =0,0,Y) is the
electron pressure, and P;(¢, M) = M*(1 — /1 — 2¢/M?)

is the ion pressure, normalized to NokgT,;. The pressure
term P(¢, ©,Y) = P; + Py includes the contribution of
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the electrons from the slab L, P, (¢) = %[e‘PErfC\/E +

2\/¢/m], and the contribution of the free and trapped

electrons from the slab R, viz. Pg(e) =%j\g‘“ X

[e?/ (")Erfc\/% +2./55+ % \/".’7%]. The trapping potential

in Eq. (2) was obtained by assuming W(0) = 0. From the
analogy with particle motion, when the Sagdeev potential
(2) is negative, the electrostatic potential is driven out of
equilibrium and the system supports solitonlike structures.
On the other hand, the conditions of charge neutrality at the
boundaries, equivalent to considering dW(¢)/d¢lg ,, = 0,
assure that ¢ grows monotonically from 0 to ¢, without
oscillating back and forth, while the condition WV (¢p,) =
W(0) = 0 assures that ¢, remains bounded without grow-
ing indefinitely.

Examining Eq. (2), we can thus conclude that the system
supports a monotonic double layer solution, for a given
Mach number, only if the electron pressure exceeds the ion
pressure along the shock, and if both coincide in value and
slope at the boundaries x = x; (¢ = 0) and x = x; (¢ =
¢@o). On the other hand, if the electrostatic potential ex-
ceeds the critical value ¢, = M?/2, the ion pressure be-
comes imaginary, and the wave “breaks” [6]. In order to
have a steady state solution, we must then impose
V(@) >0 [11]. The inequality can be written in terms
of ion and electron pressures in the form
P,(M?/2,0,Y) < P; = M?, which recovers the same re-
sults obtained by previous authors in the limit of ® — 1
and Y — 1 [6,7], and that imposes an upper limit to the
Mach number of the shock waves created during the col-
lision of two plasma slabs with temperature ratio ® and
density ratio Y. When M2 > 1 and M? > /O, the elec-
tron pressure P,(¢, ®,Y) can be properly expanded
around ¢ = ¢, and the expression for the maximum
Mach number can be written as

3(Y+1) 7O
N

Equation (3) shows that the collision of two plasma slabs
can give rise to electrostatic collisionless shocks with very
large Mach number, provided that the two slabs have the
appropriate temperature (®) and density (Y) ratios. As far
as we know, no electrostatic shock waves with M > 6 have
been predicted before. This difference arises from the fact
that the present model includes the variation of electron
pressure not only as a function of the electrostatic poten-
tial, but also as a function of the temperature jump, O,
between the electrons in the downstream and upstream
plasma slabs. When the downstream electrons have a
temperature larger than the upstream electrons, the elec-
tron pressure in the shock is reduced (few electrons are
trapped), the maximum electrostatic potential ¢ can sta-
bilize to a larger value defined by ®, and the maximum
Mach number M, = +/2¢. increases accordingly.
Figure 2 shows the theoretical prediction of the maximum
Mach number as a function of @, for different plasma
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FIG. 2. Maximum Mach number of the shock as a function of
the electron temperatures ratio ® = T, /T,; , for three different
conditions, namely Ny; = Nyg (solid line), Ny, = 3Nyr (dash-
dotted line), and Ny; = Nog (dashed line). The shaded areas
represent the regions of allowed Mach number.

density ratios Y. The solid line represents the collision of
two plasma slabs with equal density (Y = 1), recovering
the classic limit M ~ 3.1 [7,8] when ® = 1. The condition
for the minimum Mach number is found by imposing that
the Sagdeev potential is negative at its minimum. When
O = 1and Ny; = Ny, the minimum Mach number is 1, as
in the hydrodynamic limit.

In order to check the consistency of the theoretical
predictions, we have performed particle-in-cell simula-
tions using the fully relativistic massively parallel code
OSIRIS 2.0 [19]. The 1D simulations are performed in the
reference frame of the slab L, distance is normalized to
¢/, charge to the electron charge e, mass to the
electron mass m,, and time to 1/w,.., where w,,;, =
(4me*No./m,)"/?. The box length is 120c/w .., with
32768 cells, 50 particles per cell per species (4 species),
and the time step is w ,,;df = 3.63 X 1073. The simula-
tions start at w,,; 7 = 0, with the slab L occupying the
region xw ., /c = [0, 80], and the slab R occupying the
region x ., /c = [80, 120]. In the simulations, the shock
is driven by the slab R, both moving to the left; the shock
and driver velocities are calculated in the frame of the slab
L. The simulations cover a wide range of parameters, with
the driver velocity varying between Mach 2 and Mach 40.
The electrons in the R and L slabs have temperatures
T,k = 1keVand T,;, = 10 eV, respectively, the tempera-
ture ratio is ® = 100, and the density ratio is Y = 3. In
such conditions of temperatures and densities, depending
on the velocity of the driver, the theory predicts the for-
mation of shock waves with Mach number ranging be-
tween 10 and 20 (cf. Fig. 2). Figure 3 shows the com-
parison between the theoretical and the numerical electro-
static potential ¢, as a function of the Mach numbers of the
shocks observed in the simulations; such shocks showed
velocities ranging between 10 and 20 times the ion sound
speed, in excellent agreement with the theory. It should be
noted that, while no shocks are observed for drivers (slab
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FIG. 3. Electrostatic potential ¢, normalized to kzT,; /e, ob-
tained from simulations (circles) and from the theoretical model
(solid line), as a function of the shock wave Mach number M.

R) moving with velocity above Mach 20, very high Mach-
number shocks (M ~ 10-20) are created by drivers moving
with velocity between Mach 2 and Mach 20. In the simu-
lations, the value of the electrostatic potential has been
calculated for well developed shock structures, i.e., nor-
malized times much larger than ..t = 1000. Figure 4
shows the typical phase space p1x1 of the ions from the L
slab, at four different time steps. The slab R moves towards
the left with M = 15, and drives an electrostatic shock
moving at M = 16. The electrostatic potential predicted by
the theory for the conditions in our simulation, ¢7 = 123,
is in very good agreement with the electrostatic potential
obtained in the simulations, ¢, = 125 = 5. As the shock
structure propagates, the ions are picked up and acceler-
ated: a small fraction is reflected by the electrostatic po-
tential, while most of the ions end up with the same speed
of the shock wave. We have also performed simulations of
scenarios with two identical slabs: in these scenarios, when
colliding at M > 6, no shock formation was observed, thus
confirming that high Mach-number shocks are supported
only when the colliding slabs have the appropriate tem-
perature and density ratios.

In conclusion, we have shown theoretically and numeri-
cally that very high Mach-number shock waves are formed
during the collision of plasma slabs. The simulations con-

firmed that such shock waves, which travel with Mach
numbers well above previous predictions [6—10], arise
naturally during collision of plasma slabs with different
electron temperatures, and driver velocity between M = 2
and M = M_,,,. Such situations could readily occur in
astrophysics and in the interaction of high intensity lasers
with plasmas [5]. We have also shown that the maximum
Mach number grows with the electron temperature ratio as
~0!/2 and with the electron density ratio as ~(1 + Y)/Y.
Further theoretical and numerical analysis will extend the
theory to extremely large Mach-number shocks for which
M=V, /V,, and include the influence of relativistic
effects for shock velocities comparable with the speed of
light.
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