Progress on Atom Interferometer (AI) in BUAA

Group of Prof. FANG Jiancheng Beihang University

ZHANG Yuchi, Hu Zhaohui, QI Lu, WANG Tongyu, WANG Tao 01.09.2011

7th UK-China Workshop on Space Science and Technology

Fundamental science in space exploration and atom interferometers

Introduction to Atom interferometers

Progress on atom interferometer in BUAA

Fundamental Science in Space Exploration

Precision Measurement with Atom Interferometer in Space Exploration

- Measurement of fundamental constants such as S and G
- New definition of unit Kg
- Test of equivalence principle
- Test of general relativity
- Test Newton's law at short distances
- Development of new detectors for gravitational wave
- Development of transportable sensors for geophysics and space

 Fundamental science in space exploration and atom interferometers

Introduction to Atom interferometers

 Progress on atom interferometer in BUAA

Laser Cooling Technology

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

Steven Chu

0

Claude Cohen-Tannoudji

0

A

e	e	e
USA	France	USA
Stanford University Stanford, CA, USA	Collège de France Paris, France and École Normale Supérieure Paris, France	National Institute of Standards and Technology Gaithersburg, Maryland, USA
1948 -	1933 -	1948 -

Laser cooling: Laser light is used to cool atomic vapors to temperatures of $\sim 10^{-6}$ Kelvin.

Laser cooling techniques are used to achieve the required velocity (wavelength) control for the atom source.

Atom cloud in optical molasses

Principle of Atom interferometer

phase difference:

$$\Delta \varphi = \varphi_1 - \varphi_2 = \frac{1}{\hbar} \left(\int_1 U_1 dt - \int_2 U_2 dt \right)$$

The energy U can be different for the two partial waves as a result of the interaction with external potentials or because of the difference in atomic internal ernergy.

Sensitivity of Atom Interferometry

Atom Interferometers without Guide

atom gyroscope

atom Interferometry

IQO Cold Atom Sagnac Interferometer Fundamental science in space exploration and atom interferometers

Introduction to Atom interferometers

 Progress on atom interferometer in BUAA

Beamsplitter and Mirror for Atoms

Kapitza-Dirac Diffraction

Standing Light wave field is used for splitting/combining and reflecting the atoms, just like beamsplitters and reflector mirrors in optics.

Laser field is far off-resonant to reduce the spontaneous decay of atoms from the excited state.

Magnetic Waveguide for Atoms

Optical pumping

Optical pumping + Magnetic trap

Cold atoms can be trapped in magnetic trap with the optical pumping process.

The trapped atoms can be moved with the control of the magnetic trap.

Transverse Laser Trapping

¹³³Cs atoms in the first vacuum chamber was laser cooled and magneto-Optical trapped (MOT) in two dimensions.

A cigar-shaped optical molasses is achieved in the center of the vacuum chamber.

$$\vec{F}_{\rm OM}|_z = -\beta \vec{v}_{\rm atom}|_z$$

$$\vec{F}_{\text{MOT}}\Big|_{x,y} = -\beta \vec{\upsilon}_{\text{atom}}\Big|_{x,y} - \kappa \vec{r}$$

Moving Optical Molasses

Optimization of various parameters to enhance the atomic flux, including the push laser power and polarization, transverse gradient of quadrupole magnetic field, laser detuning, and Caesium vapor pressure.

Mirror MOT in Ultra-high Vacuum

Side view

Top view

Mirror MOT in the UHV cell recaptures the cold Caesium atoms transported from the 2D+ MOT.

Mirror MOT is also a 2D MOT

■ Field gradient of 2D quadrupole magnetic trap in x- and y- directions: 10 Gauss/cm, in z-direction is nearly zero Gauss/cm.

Magnetic Waveguide

Field gradient:

Z direction: 133 Gauss/cm

Y direction: 127 Gauss/cm

X direction: $< 5 \times 10^{-10}$ Gauss/cm

The resulting radius of curvature of the guide is estimated to be about 400m at point 10 mm far from the center of the guide in x direction.

Guide-based Atom Gyroscope

■ Using Figure-8 path to compensate the difference of magnetic waveguide to achieve long atomic coherence times.

■ Control the guide's motion accurately to ensure the enclosed area exactly.

- Latitude of Beijing: 39° 56′
- Waveguide (oscillation period 0.1s): 8mm back and forth, 12 times
- Area enclosed: 21 mm²
- Phase shift: Pi

summary

- Acquired 2D Caesium MOT
- To transport cold Caesium atoms to AI chamber efficiently
- To load recaptured cold atoms into magnetic waveguide
- To measure the earth's rotation with guide-based atom interferometer
- Strengthen the collaboration with RAL

