
SWIMMR

Requirements for Operations

David Jackson
Met Office - Manager of Space Weather Research
19th December 2019

@MetOfficeSpaceSWIMMR Bidders Day, Met
Office, Dec 2019

Thanks to Mike Marsh and Edmund Henley for a
lot of the slides

Overview

2

• Solterra project – summary of (scientific+) + user + system requirements for Met
Office S2E modelling system
• Example using 2 whole atmosphere models

• User and System (IT) Requirements modified for SWIMMR

• Platforms
• AWS

• HPC (MonSoon)

Presenter
Presentation Notes
Predict – to build the technology and forecasting capability to accurately predict Severe Space Weather Events;
Understand – to develop a common national understanding of space weather impacts, and to share that understanding internationally;
Prepare – to ensure UK’s preparedness to Severe Space Weather event through a proportionate risk mitigation programme, underpinned by a common understanding of impacts; and
Respond – to develop and maintain appropriate response capabilities.
Recovery – to develop recovery methods for different scenarios to get things moving again.

Sol-Terra Overview of Approach

• Categorise by region in domain (eg ionosphere)
• Scientific Review
• Operational Review – user and system requirements

Review Available Space Weather Models

Presenter
Presentation Notes
Objective:
Statement of the objective of Sol-Terra:
“To develop a roadmap for the realisation of an operational end-to-end space weather forecast modelling system, and identify the main areas where further work is needed.”

Context:
Research models are developed for a specific scientific domain not whole space weather chain – This means that the suitability of current space weather models to operate within a coupled operational space weather forecast system needs to be investigated.

Focus – Operational Forecasting:
The priority focus of Sol-Terra is operational support rather than being science/research driven concentrating on the following areas:

Timeliness: The ability to provide a forecast on a timescale useful for operational forecasting.
Robust: Must run 24/7/365
Verified: To allow a forecaster to assess the significance of a forecast and monitor the forecast skill.
Evolution: Good prospects for maintenance/evolution within an operational system.
Quality Software Engineering: To allow operational support/maintainence.
System Architecture: Consideration of system/architecture issues for an operational system.
High Quality Service: Encompassing all the above points, the ability to provide a high quality service.

Scientific Domain Overview

Solar models Heliosphere
models

Energetic
particles

Magneto-
sphere

Geomagnetic
Field

Radiation
belts Ionosphere

Thermosphere
and neutral
atmosphere

• Current space weather modelling capabilities
• Scientific Background & Model Scope
• Operational/Computational Aspects
• Inputs & Coupling
• Operational Sustainability

Model Review

• Operational Constraints
• Time Constraints – Computational/Data

Latencies
• Source Code Quality Assurance

Factors
• Documentation Standards
• Version Control (e.g. Git, Subversion)
• Error Handling
• Languages, Dependencies

• Verification & Ensembles

Operational Forecast Potential

Owens et al., 2014

Presenter
Presentation Notes
Model Review:
The initial stages of the project have conducted a review of current space weather modelling capabilities in each of the following scientific domains (description of domains).
This has been carried out engaging with model developers via review questionnaires and followed up with more detailed discussion where necessary.

The model review questionnaires addressed areas such as:
(general consideration of domain/existence, scope, perfomance, verification, coupling, software engineering, evolution)
Scientific background and model scope.
Operational running and computational aspects.
Observational inputs and coupling to other models.
Sustainability of the model within an operational system through future funding/development.

The project will also make use of external stakeholder reviews of the project.

Operational Forecast Potential:
The model review is focussed on the potential for operational forecasting.
Operational Constraints: Examining operational constraints (Software environment, API’s)
Time Constrains: Time constraints for running, computational/data input/output latencies.
Version Control : Required to allow development/support of the model code (e.g. Git, Subversion)
Error Handling: Must be able to shut down cleanly with informative error codes allowing operational support.
Languages, Dependencies: Consideration of support within an operational system.
Verification & Ensembles: Critical to give a forecaster a measure of uncertainty within the model forecast.

• Robustness: models should run successively
for a range of space weather conditions

• Forecast Cycle: The model should run fast
enough to be used within a forecasting cycle

• Quality Assurance: High standard of code
structure, documentation, error handling and
version control allowing systematic model
management

• Environment: Developed using appropriate
operating system (for Met Office this is Linux).

• Language: Source code available and model
written in appropriate language (for Met Office:
Fortran, Python or Java).

• Licensing: License, IPR and terms of use for
model and input data should be appropriate and
obtainable.

• Efficiency: If needed, code should be
parallelised to ensure HPC operation

• Resilience: Fall back option of using a simpler
configuration, other initialisation, repeat forecast,
or alternative input data source to maintain
continuous forecasting capability (e.g. solar or
geomagnetic drivers as input) in case of
technical issues

• Dependencies: Models should not have
dependencies on non-standard libraries not
under the operational centre control

• Coupling: Model should be suitable for coupling
to other appropriate models

System Requirements

Met Office User & System
Requirements for Solterra

• Timeliness: Data assimilated
and forecasts produced in NRT.

• Data Model: data driven not
climatology.

• User Documentation: High
standard - describing model
overview, input/output and
limitations on validity.

• Evaluation: Model statistical
verification skill scores defined
to inform forecaster
interpretation.

• Ensembles: possible
• Autonomy: potential to run

automatically

User Requirements

Space
Weather
Operational
Meteorologist

User

MOSWOC
Infrastructure

SystemSpace
Weather
Operations
Centre
(MOSWOC)

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

• ptop = 1.5×10-7 Pa (O exobase)
• T62L150 (~ 2°×2°, ~ 0 – 600 km)
• Free runs or A/F cycle (NWP-DA + MA Data

60-100km)
• Composition dependent R & Cp
• Height dependent g(z)

Physics
• Horizontal & vertical mixing (no “sponge”)
• Radiative heating: EUV, UV, & non-LTE IR
• Major neutrals (O, O2, N2)

Whole Atmosphere Model (WAM)

Thermosphere

Mesosphere

GFS 0 – 60 km

Stratosphere

Troposphere

WAM (Neutral
only) 0 – 600 km

Canadian Ionosphere and
Atmosphere Model (C-IAM)

• C-IAM describes the neutral
atmosphere, ionosphere and inner
magnetosphere up to ~15 Earth
radii, in a self consistent manner.
Based on CMAM neutral
atmosphere model
• T47 L95 (ground to 2×10−7 hPa

(200–350 km depending on solar
cycle, location, season and local
time).

• Hydrostatic. Full dynamics, radiation
(including non-LTE), neutral
chemistry, ion chemistry Self-
consistent calculation of E field

• C-IAM currently under development.

Example for Whole Atmosphere Models

Presenter
Presentation Notes
WAM = Extended GFS

User/System Requirements assessment

•WAM satisfies many of the requirements . NOAA GFS heritage means high standards of code
documentation and robustness. Evaluation, software dependencies and coupling are areas
needing further development.

•C-IAM satisfies a number of the requirements. It is a relatively new model, and also has no
external users, so some of the requirements are less well developed. User documentation,
evaluation, efficiency and coupling need further development. Critical requirements (autonomy,
QA, licencing) not met.

•Robustness: models should run successively for a range of
space weather conditions and handle errors appropriately and
informatively, allowing operational service and IT support teams
to understand and resolve problems.

•Forecast Cycle: The model should run fast enough to be used
within a forecasting cycle excluding data latencies (varies by
domain and conditions).

•Quality Assurance: The proposal shall be able to demonstrate
that the model will be developed and delivered to a good
standard, with version control, error handling, code review and
acceptance testing.

• IT Robustness and Error logging: Models shall be written to
an acceptable standard and shall handle errors appropriately
and informatively, allowing Operational Service and IT Support
teams to both understand and resolve problems

•Environment: Models shall be developed to run under the
Linux operating system at the Met Office, for both on-premises
and Amazon Web Service (AWS) operation

•Language: Source code shall be delivered and model written
Fortran, Python or Java. C and IDL may also be acceptable for
critical models, Appropriate versions of the above languages
shall be discussed with the Met Office before submission of the
proposal.

•Data Licensing: In addition to a royalty free, non-exclusive
licence for any model developed, licenses and terms of use for
any input data shall be obtainable and described.

•Efficiency: For computationally expensive models which are
chosen to run on the Met Office High Performance Computer
(HPC) rather than AWS, code should be parallelised to ensure
HPC operation (supported OpenMP and MPI protocols).

•Resilience: In case of data or model failure due to technical
issues, fall back option of using a simpler configuration, other
initialisation, repeat forecast, or alternative input data source to
maintain continuous forecasting capability

•Software Libraries: Models should not have dependencies on
non-standard libraries not currently supported by the Met Office.
Applicants are advised to contact the Met Office to discuss this.

• Data Requirements: All input and output data requirements
should be clearly stated to help ensure the highest level of
compatibility with other SWIMMR projects.

System Requirements

Met Office User & IT
Requirements for SWIMMR

•AssimilationTimeliness: where data assimilation is
required, data assimilated in(NRT)

•Forecast Timeliness: forecasts with an appropriate
timeliness

•Forecast Validity: Forecasts shall be produced with a
validity appropriate to the application.

•Model Robustness: Models shall run successfully and
generate realistic outputs for a range of space weather
conditions. Consideration of extreme weather
conditions should be incorporated wherever possible.

•Model Type: Models should be data driven rather than
climatology, unless infeasible or inappropriate

•User Documentation: The models shall be
accompanied by a description and guide to model use
and limitations, supplemented with references to
associated published papers

•Model Skill: Model statistical verification skill scores
defined and recorded to inform forecaster
interpretation. and benchmarking

•Ensembles: Ensemble operation possible (unless
deterministic models are shown to perform better).

•Autonomy: Models should have the potential to run
automatically, without human intervention

User Requirements

Don’t worry - in more detail
overleaf..

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

User Requirements for SWIMMR

• AssimilationTimeliness: where data assimilation is
required, data assimilated in(NRT)

• Forecast Timeliness: forecasts with an appropriate
timeliness

• Forecast Validity: Forecasts shall be produced with a
validity appropriate to the application.

• Model Robustness: Models shall run successfully and
generate realistic outputs for a range of space weather
conditions. Consideration of extreme weather conditions
should be incorporated wherever possible.

• Model Type: Models should be data driven rather than
climatology, unless infeasible or inappropriate

• User Documentation:The models shall be accompanied
by a description and guide to model use and limitations,
supplemented with references to associated published
papers

• Model Skill: Model statistical verification skill scores
defined and recorded to inform forecaster interpretation..

• Ensembles: Ensemble operation possible (unless
deterministic models are shown to perform better).

• Autonomy: Models should have the potential to run
automatically, without human intervention,

User Requirements

Obvious, for a
focused NRT
operational system

For most projects, prototype
runs (on AWS) for ~12
months. Still solar min - may
also need extreme event tests
Should be useful for
forecasters – but not
BCS standard.
Verification becoming standard for
MO; should be for you too. If you
don’t beat the existing system your
system will be rejected

Obvious, for a NRT
operational system

Desirable – no explicit need
for ensembles here

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

• Quality Assurance: The proposal shall be able to
demonstrate that the model will be developed and
delivered to a good standard, with version control, error
handling, code review and acceptance testing.

• IT Robustness and Error logging: Models shall be
written to an acceptable standard and shall handle errors
appropriately and informatively, allowing Operational
Service and IT Support teams to both understand and
resolve problems

• Environment: Models shall be developed to run under the
Linux operating system at the Met Office, for both on-
premises and Amazon Web Service (AWS) operation

• Language: Source code shall be delivered Fortran, Python
or Java. C and IDL may also be acceptable for critical
models, Appropriate versions of the above languages shall
be discussed with the Met Office before submission of the
proposal.

• Data Licensing: In addition to a royalty free, non-exclusive
licence for any model developed, licenses and terms of
use for any input data shall be obtainable and described.

System Requirements

IT Requirements for SWIMMR (I)

Need robustness
and traceability
hence vn control
and acceptance
tests vital

Do you want a call
from us at 3am on
a Sunday?

See next talk from
Alex for AWS

Matches skills of
24/7 IT Support

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

• Efficiency: For computationally expensive models,
which are chosen to run on the Met Office High
Performance Computer (HPC) rather than AWS, code
should be parallelised to ensure HPC operation
(supported OpenMP and MPI protocols).

• Resilience: In case of data or model failure due to
technical issues, fall back option of using a simpler
configuration, other initialisation, repeat forecast, or
alternative input data source to maintain continuous
forecasting capability

• Dependencies Software Libraries: Models should not
have dependencies on non-standard libraries not
currently supported by the Met Office. Applicants are
advised to contact the Met Office to discuss this.

• Data Requirements: All input and output data
requirements should be clearly stated to help ensure
the highest level of compatibility with other SWIMMR
projects.

System Requirements

IT Requirements for SWIMMR (II)

Desirable_
Overriding req. for
HPC models is that
forecasts are
completed in NRT.

MOSWOC still
need to issue a
forecast so void
needs filled –
should include this
resilience in initial
system design

Packages well-supported by
community ~OK (e.g. Astropy),
tiny ones not (e.g. MyCode.py,
1 dev did 3 commits 5 years
ago). HPC: more restrictions.
Tension with maintainability of
“roll-your-own” acknowledged!
Desirable (essential
for a coupled S2E
system, but this not
being built here)

Also: Python 3
please!

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

Recommendations for effective R2O
Input data: use real-time sources, not science-grade sources

• Less OMNI, more SWPC (datagaps, bad data etc)
Version control (GitHub, git, svn, …)

• Public / private – ideal if MO can access repo
• Use meaningful commit messages
• Create branches for new features (a la GitFlow)

• Don’t forget to merge back to trunk when happy!
Use a ticket system – one ticket per small change

• Gives extra context to commits – ideal if MO can access too
• Ideally get someone to review/QC ticket before merge

Have at least a basic test harness
• If retrofitting: add end-to-end (system) test(s) / integration tests

• Same input: does model still give same output?
• Ideally add (faster, smaller) unit tests for any new code

• Same input: does function still give same output?
Run tests on commits to the repo

• Ideally automatic each time – continuous integration
• E.g. via Jenkins, Travis-CI, Circle-CI (often free if open source)

Use logs / stdout / stderr / return codes effectively
• Default to quiet: easier to see warnings/errors (don’t ignore these!)

Don’t let perfect be the enemy of good! A little goes a long way
• I’ve run tests manually on commits – better than none!
• We’ve not always adhered to above – have been bitten!
• We’re adding in as much as possible, being pragmatic

Presenter
Presentation Notes
Input data: seems common for spwx codes to use science-grade data sources (e.g. from OMNI).
Pros: good for validation of past events; setup suitable for running science experiments (avoiding concerns about L0 data)
Cons: immediately add overhead for space weather use – need to redo any validation and verification

Version control:
Ideally use GitHub or git; you should be able to configure this so that named individuals can access (we have this with some partners)
Meaningful commit messages with short title, and summary of *why* the changes are being made. See link for guidance
The GitFlow link gives a helpful strategy for branch/trunk practice – don’t forget to merge!

Ticket system:
Internally, we’ve tended to use Trac or Jira. Other MO teams use GitHub issues.
This has saved me several times, in giving context missing from commit messages
Make sure that ticket & associated branch + commits are small and targetted (e.g. “fix the bug when running at midnight”), not big and vague (e.g. “improve model”). Makes it *much* easier to review, revert etc later

Test harness
Not as scary as it sounds. At a basic level, a “big” end-to-end test just checks if you get the same (to given precision) output (comparing to stored “known-good-output”) when run model with same input.
Unit tests are at level of individual functions – as a result, run very fast
Integration tests lie in between, joining various functions together
Ideally, you want a “test pyramid” – lots of cheap unit tests, few (one?) expensive (fragile) end-to-end tests. See the link there
You can decide your test running strategy. Common approach: run all cheap tests on every commit; run expensive tests on “nightly” builds (what subtle bugs got introduced during day)
Lots of “test runners” available, especially in python. Pytest makes it easy to run tests automatically, with ~little boilerplate
If you’re making science changes, you may need to upgrade your “known-good-output”. This is a *really* good time to get someone else to review the associated changes!

Logs / stdout etc
We’ve seen lots of very chatty code, e.g. printing lots of progress information
This can be helpful while developing (have I got myself into an infinite loop); it’s not helpful operationally, when progress output isn’t being monitored
It’s actively unhelpful when verbose progress information hides presence of warnings or error messages
Good practice: use logging. If printing, print to stderr, and protect with an if debug_mode: , and have debug_mode = False by default
This should help you (model developers) spot warnings and error messages yourself. E.g. “this functionA is deprecated – use functionB instead”
Please don’t ignore these, or use options to silence/ignore warnings & errors. They’re often indicating a problem now or on the horizon
Please address these yourselves: you’re by *far* in the best position to do this; *much* harder for someone else to address these

Worth being clear that we’ve by no means always adhered to the above.
We’re increasingly trying to now, as we see the benefits
We’re being pragmatic though – e.g. not aiming for 100% coverage in tests etc…

Also, realise above may seem very prescriptive, and that this may seem irrelevant to you
E.g. researchers’ goal = perform and publish novel research.
- In this context, pragmatic to move fast and break things with “shipped it” code, which gets papers written!
SWIMMR aims for more maintainable code. This a good time to try a more rigorous approach.
It’s easier than may appear – can usefully backport skill acquired to research sphere – help for reproducible research?

https://software.ac.uk/choosing-repository-your-software-project
https://chris.beams.io/posts/git-commit/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://guides.github.com/features/issues/
https://en.wikipedia.org/wiki/Atomic_commit#Atomic_commit_convention
https://en.wikipedia.org/wiki/Test_harness
https://artoftesting.com/difference-between-system-and-integration-testing
https://martinfowler.com/bliki/IntegrationTest.html
https://www.martinfowler.com/articles/continuousIntegration.html
https://git-scm.com/
https://trac.edgewall.org/

Cautionary tales
Input data: use real-time sources; have tests for handling code!
Branch in code given to us, with no associated test
We did not spot this, only hit buggy code operationally when L1
switched from DSCOVR to ACE and started getting NaN values in x…
if np.isnan(x) and (y != 0): # Presumably *intended* to handle ACE

buggy code, fails if run – presumably never even tested by hand

Version control and tickets
• Repo access: received lots of code via email / similar. Convenient at time; awful long-term.

E.g. find a bug: hard to find where introduced, relevant commits in parent repo, if fixed there…
• Commit messages: trying to debug code last changed 4 years ago, original devs left MO:

• “coming along nicely” [4 new files, 2 changed files]
• “” [This commit is too large to render. Showing the first 1000 files…]
• Only saving grace – there were tickets, which gave context to what was being done!

• Branches and merging: branch shared with us (DVD by post), owned by postdoc.
Never merged, difficulties picking up with code owners after postdoc left.

• Atomic tickets/commits: I often do solo work; used to bundle lots of changes in vague tickets
Changing since working more with others / having to revisit my old work and untangle things!

Test harnesses
• Lack of end-to-end test covering a code translation from IDL to Python has made it very hard

to pin down where a bug affecting extreme space weather values is, and where has come in
• Adding tests has made porting Python code from on-prem to AWS easier, more robust

Quiet logs, and warnings
• Prints makes lots of code unhelpfully verbose – harder to spot warnings
• Change compiler gfortran ↔ ifort leads to crashes after days; ≥10% differences. No –Wall?

Presenter
Presentation Notes
These are examples of issues we’ve seen in code given to us, or with our own practices in past

Compiler point: tempting to ignore all the warnings that a compiler may throw if you use a –Wall or –pedantic option.
Really best to fix though – this may be pointing at issues e.g. uninitialized arrays, which are being handled one way by one compiler, but not in standard.
Or worse, some nasty numerical edge-case.
This sort of thing makes operationalisation really hard – we may well need to use a different compiler to the model dev.
Again model dev far better placed to debug and address the issue

The big picture

14

TxWx SpWx

Models

External partners

NMHS support

Inversion Skill set

R2O/reproducibility toolbox
is useful for many careers:
- Research
- Data scientist
- Quant
- Software engineer…

…
And it’s not hard to learn

Avoid!

Different dev/prod envs
Testing a mess
Help avoid this being us!

Operationalisation bottleneck
SWPC 2019: “the first upgrade since
the initial implementation in late 2011”
MO: not yet!

MacNeiss 2018

Presenter
Presentation Notes
Inversion
We’ve got an “inversion” of capacity for model support in space weather community, compared to terrestrial weather community.

For latter, models are typically supported in-house at “national meteorological and hydrological services” (WMO-speak for weather providers like Met Office or NOAA)

These are big, complex, and have lots of support staff – scientists, and associated software engineers. They provide lots of infrastructure – e.g. testing etc – which external collaborators (e.g. academics contributing a change to cloud microphysics can benefit from) – does my change break other code? Does code still run in acceptable time.

In space weather, models are typically provided by external providers, and in-house staff merely implement them. There are often more models, and definitely much reduced resource – only 6 of us “R2O” scientists!

As a result, operationalisation is significantly harder. Where complex terrestrial weather upgrades done on ~rapid 6-month turnarounds, it’s much slower in space weather. CCMC (WSA only) – every 5-10 years; SWPC (WSA-ENLIL – harder!) – once in ~10 years. Met Office – not yet!

Anything which can be done to frontload required verification, validation, operationalisation will help here. Should help all concerned if SWIMMR achieves its aims.

Skill set
The skills in recommendations will not only help make for better researchers (helpful in a “reproducible research” context); they’re also useful in a “leaky pipeline” context, where most people coming out of the undergraduate – Masters – PhD – postdoc route will end up with different careers. Many of these skill s are highly transferrable.
Friends in banking sector are complaining that the lack of precisely these skills is diminishing the value of “data scientists” coming out from academia…
It’s not that hard to acquire these skills – everything I’ve learned has been “on-the-job”, coming from academic background (where I unwittingly reinvented a rubbish manual version control for myself: _v1 code with _v1 results…). Lots (e.g. formal testing) has been in last ~2 years, total learning investment – maybe ~1-2 weeks, then helpful putting into practice
Software carpentry https://software-carpentry.org/ have lots of useful resources

Avoid!
TSB a very visible case of where the testing strategy went wrong
Banking is admittedly particularly difficult operational environment
But how certain are we that our code has been robustly tested (e.g. for extreme conditions…)
Anything that model providers can do themselves will help everyone concerned

https://www.swpc.noaa.gov/news/wsa-enlil-v20-now-operational
https://doi.org/10.1029/2018SW002039
https://software-carpentry.org/

Operational Architecture

Current
• Expensive models (WSA Enlil, SWMF) use HPC
• Other models largely use Virtual Linux Machines

Future
• Expensive models will likely still use HPC
• Other models being moved to AWS (or will be implemented there)

For SWIMMR
• HPC access via MonSoon – see next slide
• Shared Met Office / academic space on AWS

• AWS database of operational and new observations to be developed
• Models to be implemented on AWS – “researcher sandbox”
• Prototype system running on AWS for several months before end of

SWIMMR – and later R2O much easier since AWS setup the same
• See Alex’s talk (next) for much more detail

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

MonSoon

• Part of Met Office
Supercomputer
open to academic
community

• MonSOON and
operational HPC
setup the same –
reduces R2O
overheads

• Free for NERC
funded projects

• Application made
after funding
awarded

https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/monsoon-hpc

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

https://www.metoffice.gov.uk/research/approach/collaboration/jwcrp/monsoon-hpc

Any Questions?

Presenter
Presentation Notes
Specific Met Office User & System Requirements

The following are the Met Office requirements for the adoption of an operational space weather model within the scope of the Sol-Terra project. The user requirements are derived from the case of a space weather operational meteorologist within the Met Office Space Weather Operations Centre (MOSWOC). The system requirements are the pre-requisites for the successful implementation of an operational space weather model within the MOSWOC infrastructure. The following requirements outline the respective requisite category and its definition.

(It may be possible to use these requirements to define an operational TRL level)

	SWIMMR��
	Overview��
	Sol-Terra Overview of Approach
	Scientific Domain Overview
	Met Office User & System Requirements for Solterra
	Canadian Ionosphere and Atmosphere Model (C-IAM)
	User/System Requirements assessment
	Met Office User & IT Requirements for SWIMMR
	User Requirements for SWIMMR
	IT Requirements for SWIMMR (I)
	IT Requirements for SWIMMR (II)
	Recommendations for effective R2O
	Cautionary tales
	The big picture
	Operational Architecture
	MonSoon
	Any Questions?

