Millimetre Wave Technology for Earth Observation and Inter-Planetary Missions

Dr Simon Rea, <u>simon.rea@stfc.ac.uk</u>

Millimetre Technology Group STFC RAL Space, Didcot, UK, OX11 0QX

Outline

• Introduction to the Millimetre Technology (MMT) Group

RAL Space

- Expertise
- Selected Projects
- Millimetre Wave Technology Drivers
 - EO & Inter-Planetary Mission Requirements
- Selected Millimetre Wave Technologies
- MMT Support to Space Missions

RAL Space

MMT Group – Overview

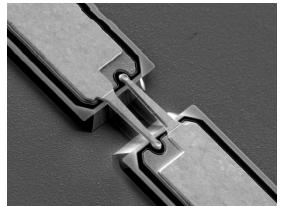
- Develop cutting-edge technology at frequencies 100 GHz 2.5 THz
- Primary applications: Radio Astronomy & Atmospheric Science
- ~20 full-time engineers and technicians
 - Supplemented by placement students and visiting scientists
- Expertise ranging from
 - Device fabrication (Schottky diodes & associated filters), to
 - Component design, manufacture & test, to
 - Complete instrument-level design & development

MMT Group – Selected Projects (1)

- ALMA (Atacama Large Millimetre Array)
 - Host the European Front-End Integration Centre
 - Provide several key technologies (local oscillators, photonic mixers)
- Passive & active mm-wave instruments
 - MARSCHALS, ISMAR (airborne passive radiometers)
 - 94 GHz FMCW Cloud Radar (ground-based active radar)

ALMA Receiver Under Test

MARSCHALS on Geophysica M55



94 GHz FMCW Cloud Radar

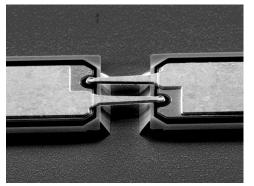
MMT Group – Selected Projects (2)

- Schottky Diode Fabrication Facility
 - Planar Schottky diodes for mixers, multipliers and detectors
 - Spin-out company: Teratech Components Ltd.
- **Component Development**
 - Receiver components (mixers, multipliers, detectors)
 - Optics components (feedhorns, FSS, wire grids, mirrors)
 - **Calibration targets**

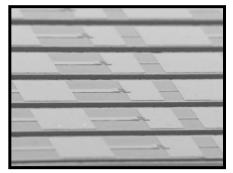
RAL Anti-Parallel Schottky Diode Pair

Space Qualified 183 GHz Mixer (AMSU-B & HSB)

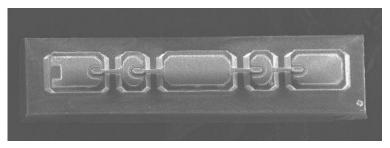
Pyramidal Calibration Target (ALMA, ISMAR)


Millimetre Wave Technology Drivers

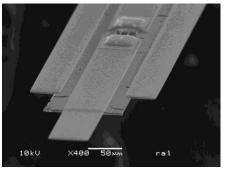
- Key Earth Observation Mission Requirements
 - Wide spectral coverage (18.7 GHz 874 GHz) \rightarrow receiver type & components
 - Multi-spectral/pixel instruments \rightarrow compact receivers, component integration
 - High spectral resolution \rightarrow back-end technology (e.g. digital spectrometer)
 - Cost, lifetime \rightarrow operation at ambient temp. (i.e. Schottky-based)
- Key Inter-planetary Mission Requirements
 - Mass and power are critical
 - → Push to higher receiver operating frequency (smaller reflector, optics)
 - → Compact receivers, component integration
 - → Operation at ambient temp. (i.e. Schottky-based)
 - Spectral resolution (atmospheric chemistry and meteorology, e.g. wind speed via Doppler shift)
 - → Back-end technology (e.g. digital spectrometer)


Technology – Schottky Diodes

• Diode fabrication and optimisation

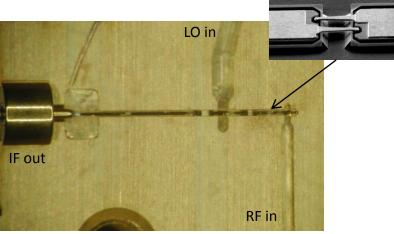


Air-bridged anti-parallel Schottky diode pair


Circuit fabrication technology

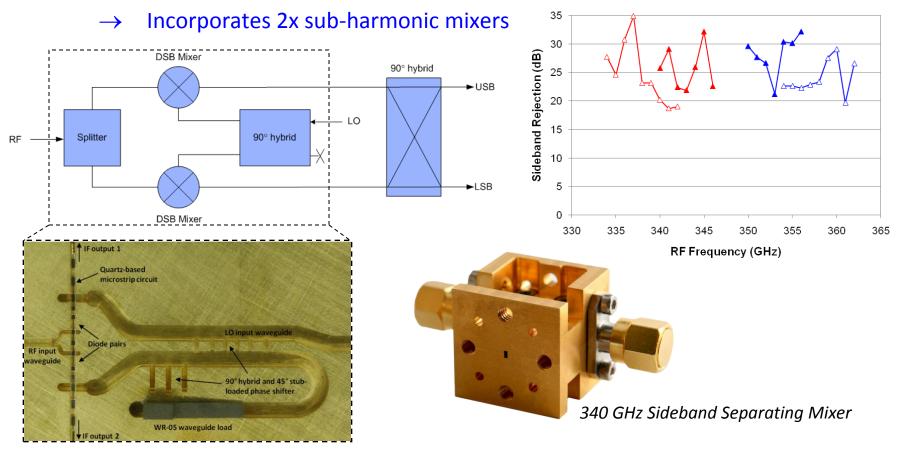
Integrated circuits on GaAs

Anti-series varactor diodes for frequency doublers


Integrated circuits on GaAs membrane

Technology – Frequency Mixers (1)

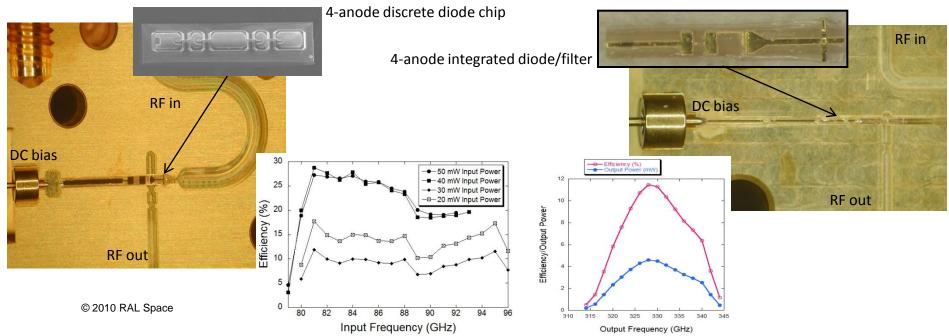
- Frequency conversion for signal down-conversion
 - Sub-harmonic mixers (common for EO)
 - Fundamental mixers (applicable to Inter-Planetary)
 - Recent developments: DSB sub-harmonic mixers from 183-664 GHz for EO missions (e.g. Post-EPS, PREMIER, ISMAR)



Discrete anti-parallel diode pair

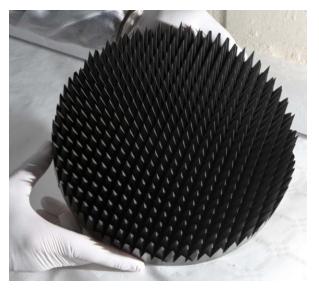
Technology – Frequency Mixers (2)

- Frequency conversion for signal down-conversion
 - Also developing sideband-separating mixers for PREMIER

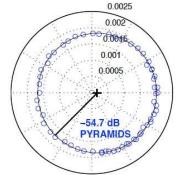


Technology – Frequency Multipliers

- Frequency conversion for local oscillator chains
 - High RF input power
 - → Larger diode anode size increased number of diodes per chip
 - \rightarrow Thermal dissipation is critical


80-160 GHz Doubler

160-320 GHz Doubler


Technology – Calibration Targets

245mm diameter mg-alloy-cored calibration load for ISMAR airborne radiometer

- Wideband performance
 - Typically better than 50dB return loss from 100GHz to at least 700GHz
 - Can be optimised for other frequency ranges

- Metal-cored black body calibration loads for radiometer calibration:
 - Ground-based (ALMA)
 - Airborne (MARSCHALS, ISMAR)
 - Space
 - Lightweight aluminium or magnesium alloy core
 - Wide temperature range 77-370k

Return Loss of ALMA prototype load at 600GHz

Technology – Spectrometers

- For millimetre-wave spectroscopy
 - Wide spectral coverage
 - High spectral resolution
 - Compact and power efficient

Prototype Digital FFT Spectrometer

- High Speed ADC (3Gs/s)
- SpaceWire data bus
- FPGA with custom DSP
- Instantaneous bandwidth: 1 GHz
- Spectral resolution: 1 MHz
- Additional funding secured for further development

MMT Support to Space Missions (1)

- Post-EPS (Post-EUMETSAT Polar System)
 - European platform for Operational Meteorology from ~2018
 - 2 millimetre wave imagers proposed (MWI, ICI)
 - RAL currently supporting Phase A/B1 industrial studies
 - Developing receiver concepts from 18.7 GHz 664 GHz
 - Participating in ESA technology development programmes
- PREMIER (candidate Earth Explorer 7 mission)
 - To study the chemical composition of the atmosphere (UTLS) at IR & MMW
 - Currently supporting critical technology development for STEAM-R (CEOI national funding)
 - 340 GHz sideband separating mixer

MMT Support to Space Missions (2)

- FengYun 4 (China)
 - Meteorological platform from GEO
 - Millimetre/Sub-millimetre Sounder (MSS): 118-424 GHz
 - Potential feasibility study receiver hardware
- JUICE (Jupiter Icy Moon Explorer)
 - Was Europa Jupiter System Mission Laplace
 - Development of ORTIS payload concept (ORbiter Terahertz Infra-red Sounder)
 - 3 THz radiometer with digital spectrometer back-end
 - Simultaneous observation of key molecular species present Jupiter upper atmosphere (H₂O and CH₄)
 - Brightness temperature mapping of Ganymede

www.stfc.ac.uk/RALSpace

www.teratechcomponents.com