

Progress on the SKYLON Reusable Spaceplane

7th Appleton Space Conference 8 December 2011

Alan Bond

Managing Director

12 tonnes to LEO

10 tonnes to ISS

200m³ payload bay

4.6m diameter payload

Being revised to D1 Payload 15 tonnes to LEO

Company Structure (April 2011)

Headquarters

Design and Test Facilities

Culham Science Centre

CROSSMAN 🕞 ENGINEERING

Sheet metalwork & fabrication Wantage

Experimental productionAbingdon

Precision engineering
Newbury

Progress on SABRE

SABRE-3 Engine

The SABRE Engine Cycle

In rocket mode LOX replaces the air fed to the combustion chamber.

Inlet Plenum & IGV Assembly

Rotors 1 & 3

Rotors 2 & 4

Experimental Contra-rotating Stator-less Turbine Installation

STRICT Thrust Chamber

E-D Nozzle Test Program (STERN)

(Joint program Uni. of Bristol and Airborne Engineering)

STERN Thrust Chamber Firing

Reaction Engines Testing

J-site at Westcott

Joint programme with Airborne Engineering

Thrust stand for Low-NOx and Strict Programmes

Strict Engine Test Firing – June 2011

REACTION ENGINES

Test LCT-T01-4 @ pc=70 bar 8kg/s LOX cooling Test bench P8, Lampoldshausen Germany

REACTION ENGINES

DLR Film Cooling Test Facility at P8 Lampoldshausen

Precooler Geometry

Matrix Production

 The prototype pre-cooler will be made from over 16,000 thin-walled Inconel tubes.

Reaction Engines' Radley Road (Abingdon) Facility

REACTION ENGINES

 All incoming tubes are inspected and processed prior to module assembly.

Pre-Cooler Construction

Precooler Modules

Pre-Cooler Testing at Reaction Engines B9

REACTION ENGINES

Pre-Cooler Testing

 The Pre-Cooler will be tested at REL's B9 test site using a VIPER 522 jet engine.

REL's B9 installation with VIPER and 'dummy' pre-cooler assembly.

High Pressure Helium Loop at B9

Progress on SKYLON

SKYLON D1

D1 requirements are now established and validated.

Configuration revision proceeds: a fully trimmed solution has been found, but it will require further study before it can be finalised.

External contributions to D1 design (expand available skill base):

- Aerodyanmic modelling
- Structure loads analysis
- Payload interface
- Avionics and electrical power

SKYLON D1 Airframe Support Studies

REACTION ENGINES

Re-entry Modelling

with DLR Braunschweig using TAU CFD code

Aeroshell Material

with Lateral Logic and Pyromeral

Titanium Matrix Composite Struts

with TISICS Ltd (TSB supported Research)

The Phase 3 Objectives (30 month Programme)

- Raise engine technology to TRL 6 through ground testing.
- Complete the design of the SABRE4 to manufacturing drawings.
- Ensure that the vehicle requirements and SABRE4 engine design are compatible.
- Flight test the nacelle design (desirable).

Nacelle Flight Test Vehicle

 $Length \approx 9m$

Span ≈ 3.5 m

 $Mass \approx 1000 kg$

Phase 3 Programme

Phase 3 Cost Estimate

Total Engine Programme (with NTV) £220m

Which is comprised by:-

•	Airframe	requirement studies	£6
_	/ 1111101110	10 quil office to during	

 Preparation for Phase 4 £30 	0
---	---

•	Engine	technology	demonstration	£30m
---	--------	------------	---------------	------

•	SABRE4 design	£134m
	or to the industry.	~ 10 1111

• NTV £20m

The engine is the long lead item but the vehicle system design must begin soon in order to meet entry to service in 2021-2022

SKYLON Review

UK Space Agency independent review

ESA providing technical support

Almost 100 invitees attended two day workshop (Sept 2010)

Part of wider review including on site audit by ESA

REVIEW CONCLUSIONS

'no impediments or critical items have been identified for either the SKYLON vehicle or the SABRE engine that are a block to further developments'.