CCDs for Earth Observation

James Endicott 1st September 2011

7th UK – China Workshop on Space Science and Technology, Milton Keynes, UK

Introduction

- What is this talk all about?
 - e2v sensors in spectrometers
 - CCD and CMOS imagers
- What is this talk really all about?
 - MERIS (CCD25-20)
 - OMI (CCD55-20)
 - TropOMI (CCD275)
 - CMOS hyperspectral imager
- Identifying the trend in the evolution of detectors

MERIS on ENVISAT

- Medium Resolution Imaging Spectrometer (MERIS)
- Launched on Envisat 2002
- One of 10 instruments
- 15 spectral bands, 390 1040 nm
- Ground resolution of ~300m
- 1150km wide swath covered by 5 identical cameras
- Global coverage every three days

e2

MERIS Medium Resolution Imaging Spectrometer

- Images the Earth in a push broom mode
- 2D array is used to acquire spectral & spatial information
- Each line samples the swath for a different band
- Frame transfer device enabling simultaneous readout and integration

CCD-array schematic

e2v

Medium Resolution Imaging Spectrometer (MERIS)

- 44ms frame period (~23Hz)
- Fast frame transfer after integration
- 4x4 binning is used
- Lines outside the 15 spectral bands are dumped

Images courtesy of ESA http://envisat.esa.int/instruments/meris/

MERIS CCD25-20 highlights

- Gold plated window and package for low emissivity
- Graded AR coating to match the wavelength dispersion of the spectrometer
- Thick window to maintain flatness
- Non Inverted Mode Operation
- 22.5 μm x 22.5 μm pixels
- 780 x 576 image area

e2

The Aura Mission - OMI

e2v

- NASA's Aura mission
 - Launched 2004
 - Similar period to Envisat
 - 4 instruments
 - OMI Ozone Monitoring Instrument
 - Similar to MERIS
 - Push broom imaging frame by frame
 - Spatial information along a row
 - Spectral information in different rows
 - Two channels, UV1 and UV2
 - UV-1, 270 to 314 nm, UV-2 306 to 380 nm

Image courtsey of http://aura.gsfc.nasa.gov/instruments/omi.html

NASA Aura Ozone Monitoring Instrument CCD55-20

- CCD55
 - CCD25 re-masked
- New manufacturing masks
 - Photolithography
- New features
 - Advance Inverted Mode Operation
- Advantages
 - Lower dark signal (x100)
- Disadvantages
 - Lower Full Well Capacity
 - Slower line transfer
 - Larger Point Spread Function
 - Random telegraph Signal visible after radiation (flickering pixels – bi/tri-stable white defects)

e2

NASA Aura Ozone Monitoring Instrument CCD55-20

- Enhanced back thinning process
- Improved QE at short wavelengths (< 450 nm)
- OMI UV
 - No window to maximise UV sensitivity
 - Enhanced BT process
 - UV optimised AR coating
 - AIMO to improve dynamic range

QE: 0°C for an Inverted Mode device

e2V

- TropOMI Tropsheric Ozone Monitoring Instrument
- Aim to bridge the gap between Envisat / Aura and Sentinel 5 (2020)
- UV, VIS and NIR imagers from e2v
- CCD275
- 1024 x 1024 image area with 26 μm square pixels
 - More than double the image area of a MERIS or OMI device
- 2 phase image and store pixels with metalisation for fast line transfer
- 0.75µs per line

• Fringe Suppression for the NIR channel

- Switch-able gain
 - Switched in capacitance to alter the device responsivity
 - Higher responsivity for lower signal spectral bands
 - Lower responsivity for higher signal spectral bands

Summary of CCDs for Ozone Monitoring Instruments

• MERIS

- CCD25-20, NIMO, graded AR coating, UV-VIS-NIR on each device
- 5 cameras to achieve a wide swath
- OMI
 - CCD55-20, AIMO, UV enhanced process
- TropOMI
 - CCD275, 2-phase imager with metalisation for fast frame transfer / reduced smear / optical cross talk
 - Split readout register to achieve higher data rate
 - Graded AR coating and fringe suppression structure
 - Selectable gain (responsivity)

• What is next?

- e2v have designed (in collaboration) and characterised a hyper spectral CMOS sensor
- Manufactured at a foundry

Resolution	1024 x 256
Pixel pitch	24 µm square
Readout speed	250 frames per second
ROI, windowing	Random access in Y-direction (spectral direction) only
Full Well charge for 1% linearity	100 ke- and 300 ke- (programmable)
Line-by-line programmable charge	12 fF or 13 µV/e⁻
conversion factor	36 fF or 4 μV/e⁻
Total noise	<50 e- _{RMS} in basic mode without CDS
	<20 e ⁻ _{RMS} with CDS
QE	>90% in VIS

CMOS hyper spectral sensor

- Characterisation of the front illuminated device has been successful
- Characterisation of the back illuminated device has revealed some drawbacks in noise, responsivity and dark signal
- 2012 will see a 2nd iteration of the device for future Earth observation instrumentation

Thank you for your attention