

Detecting Volatiles on Comets (and Asteroids)

7th China-UK Workshop Space Science & Technology (Aug. 2011)

Ian Wright Professor of Planetary Sciences Planetary and Space Sciences

Q

Sign In

Using LEGO® to simulate ESA's touchdown on a comet

COSA European Space Agency

217 videos 😒 Subscribe

Methods Of Determining Light elements from Unequivocal Stable isotope compositions (MODULUS or Ptolemy)

Jilin Meteorite (1976)

Wet Mars?

Allan Hills 84001

Stepped Combustion Data from ALH 84001,106

 \overline{PS}

Takács - Kiss (Uni. Sydney) - Szabó (Uni. Szeged)

RosettaLaunch:07:17:44, 2nd March 2004

Rosetta Comet Rendezvous

 \overline{PS}

(67P/Churyumov-Gerasimenko)

Comet 67P/Churyumov-Gerasimenko

3-D reconstruction of nucleus based on March 12, 2003 Hubble Space Telescope observations

EJOLVED GAS ANALYSIS SYSTEM #2 NOTE THAT ALL CARRIER GAS BLEED PIPEWORK NEEDS TO (HELIUN ?) BE KEPT WARM (~ Q "L) Pump TO PREVENT GASES CONDENSING OXYGEN = GAS MASS CHRONATOGRAPH SECTROMETER ALIQUOT CRYOGENIC TRAPS -> CALIBRATION ZA AT 400°C CONTAINING MOLECULAR GAS H20 -> H2 SIEVE (TO TRAP CO2, H2O, SO2 AND N2) FURNACE AMBIENT TO 1200°C (IDEAL) AMBIENT TO SOO'L (MINIMUM FOR & = VALVE USEFUL SLIENCE) = CAPILLARY TUBING = WIDE -BORE TURING OXYGEN : GENERATES FROM KMAD4 @ 200°C OR CUO @ 450-850°C. THE LATTER CAN BE USED TO RE-ADSORD 1PW 14-JAN-93 EXLESS OXYGEN

Philae "RoLand" The Lander

APXS - Alpha Particle X-Ray Spectrometer (elemental composition of the comet's surface)

CIVA - Six identical micro-cameras (panoramic pictures & spectrometer for composition and texture of samples collected from the surface)

CONSERT - Comet Nucleus Sounding Experiment by Radiowave Transmission (probes the internal structure of the nucleus)

/81

MUPUS - Multi-Purpose Sensors for Surface Science (sensors to measure the density, thermal and mechanical properties)

ROLIS - Rosetta Lander Imaging System (high-resolution images during the descent and stereo-panoramic images of surface areas)

ROMAP – Rosetta Lander Magnetometer and Plasma Monitor (determines the local magnetic field and comet/solar wind interactions)

SESAME - Surface Electrical, Seismic and Acoustic Monitoring Experiments (permittivity, propagation of sound and dust impact monitoring)

SD2 - Sample and Distribution Device (drills up to 20 cm into the surface and collects samples)

COSAC - Cometary Sampling and Composition Experiment (determination of organic compounds)

Ptolemy - MODULUS (Methods Of Determining and Understanding Light Elements from Unequivocal Stable isotope compositions)

Ptolemy Evolved Gas Analyser - How it works...

Ptolemy Evolved Gas Analyser - How it works...

Ptolemy Evolved Gas Analyser

Ptolemy Mass Spectrometer

Ptolemy The Wiring Challenge

Ptolemy During FM Electrical Testing

Ptolemy Pipework Detail

Ptolemy The Completed Flight Model

1. 2 hr 50 min prior to close approach, and Rosetta has the +Z instrument axis, and thus the Ptolemy vent pipe pointing toward Lutetia.

2. 1 hour prior to close approach and the spacecraft attitude has barely changed.

3. Sub-Solar point 3 measurement: spacecraft attitude has still barely changed, outgassing is at a minimum.

T. Rosetta is tracking Lutetia - large outgassing event

4 and 5. Measurements at one and two hours after close approach, with Ptolemy taking background spectra of spacecraft outgassing.

Low mass range spectra, combined over the entire flyby

High mass range spectra, combined over the entire flyby

Ptolemy pressure proxy measurement during the Lutetia flyby

 \overline{PS}

 \overline{PS}

Thank you

谢谢你

