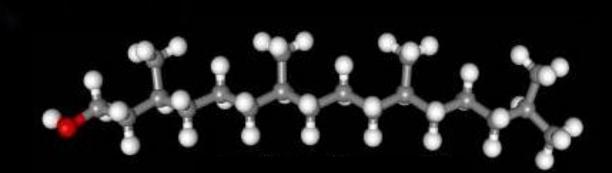


Crai


7th China-UK Workshop Space Science & Technology Kents Hill Park Conference Centre, Milton Keynes 31st August to 1st September 2011

The Life Marker Chip (LMC) experiment on ExoMars

David Cullen & the LMC Consortium

Professor of Bioanalytical Technology, Cranfield Health, Cranfield University, UK http://www.cranfield.ac.uk/health/abouttheschool/people/page8056.jsp

How to detect evidence of Life in on Mars?

ESA's ExoMars rover (CGI version 2010)

Life Marker Chip Flight Model design (early 2010)

Lateral flow immunoassay (*e.g.* pregnancy test kit)

Outline

- ExoMars rover mission current situation
- LMC science case & molecular targets
- Overview of LMC instrument
- LMC current status

ExoMars current status

ExoMars Rover (coming into 2011)

0

A

x

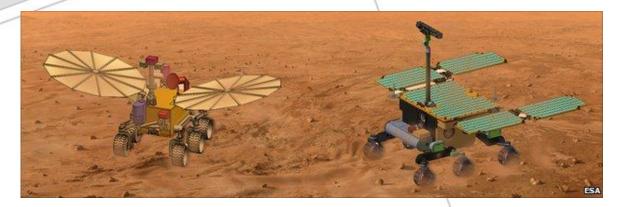
Launch scheduled for 2018

• MicroOmega

Instruments

PanCam

Ma-Miss


- MOMA (GC/LD-MS)
- RAMAN
- Mars-XRD
- Life Marker Chip (LMC)
- CLUPI
- Other features
- Drill (to ~2m)

ExoMars – into 2011

- Joint Mars Exploration Programme (JMEP) between NASA and ESA
 - 2016 ExoMars mission orbiter and ESA EDL demonstrator
 - 2018 ExoMars mission dual rover ESA ExoMars and NASA MAX-C delivered by modified NASA Sky Crane EDL

• Spring 2011 - cost concerns in ESA and NASA

- Mismatch between the ESA cost cap, the programme's scope, and its estimated Cost at Completion (CAC)
- NASA technical and budget difficulties to support their commitments for the Joint Mars Exploration Programme (JMEP)

Abandonment of dual rover ExoMars / MAX-C mission

© Cranfield University 2011

ExoMars – post April 2011

Route forward

- ESA and NASA recommend development of a single rover mission for 2018 launch
- NASA will provide launcher, cruise stage, and EDL system
- ESA will provide rover
- Will accommodate the present ESA exobiology payload (ALD), subsurface drill, and caching system to be provided by NASA
- Also a robotic arm with mini corer to acquire additional samples and to pass them either to the caching system or to the rover's analytical instruments

Immediate issue

Expected autumn announcement of NASA financial agreement

LMC objectives & targets

LMC Science Objectives

- Detection of organic molecules in Martian rocks and regolith
 - Detect organics in suitable samples e.g. sedimentary, evaporite, ... deposits – with lower limits of detection at ppm to ppb range
 - Measure organic content versus depth (0m to 2m)
 - Interpret detected organic molecules within categories of extinct and extant life (Earth-like Life), abiotic chemistry

LMC organic molecular target classes

- Extinct Life preservation / diagenetic products of ancient life
- Extant Life geologically short-lived products of present / recent life
- Abiotic organics examples of on-going meteoritic in-fall, preservation / diagenetic products of early Mars organics inventory
- Spacecraft contamination markers mainly high-level Earth microorganism markers
- Assay control markers for example synthetic organic molecules

Categories of LMC targets – science & physicochemical

- 1. Small apolar acyclic aliphatic
 - structurally un-constrained, no functional groups
 - maps to extinct life biomarkers
 - examples phytane, squalane, hexadecane, ...
- 2. Small apolar polycyclic aliphatic
 - structurally constrained, no functional groups
 - maps to extinct life biomarkers
 - examples 5β sterane, hopanoid, ...

3. Small polycyclic aromatic

- structurally constrained, no functional groups
- maps to abiotic markers
- examples pyrene, phenanthrene, naphthalene, …
- 4. Small polar
 - Various inc. extant life biomarkers
 - maps to various science targets
 - examples positive controls, <u>amino acids</u>, various extant life biomarkers, ...

LMC overview

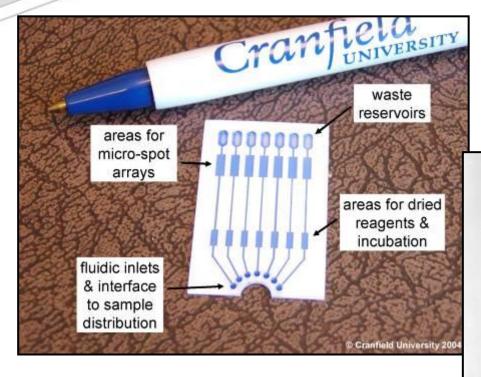
The SMILE / LMC concept

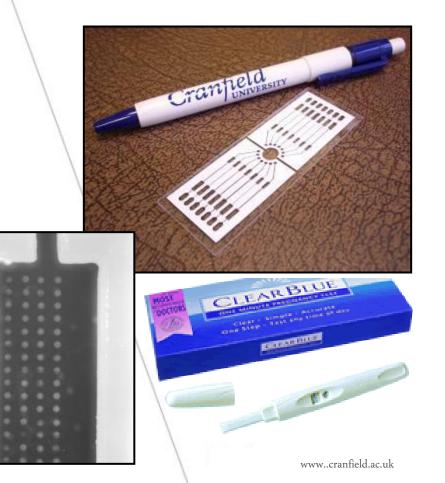
- Specific Molecular Identification of Life Experiment (SMILE)
- ... more commonly known as the Life Marker Chip (LMC)
- Lead by Leicester (M.R. Sims) and Cranfield (D.C. Cullen) universities
 - initial thoughts 1998
 - proposal to ExoMars mission / ESA 2003
 - selected for initial development 2006
 - launch scheduled for 2018 (instrument delivery 2014)
 - exploitation of recent developments in biosensor & bio-analytical technologies
- For planetary exploration <u>and terrestrial</u> applications

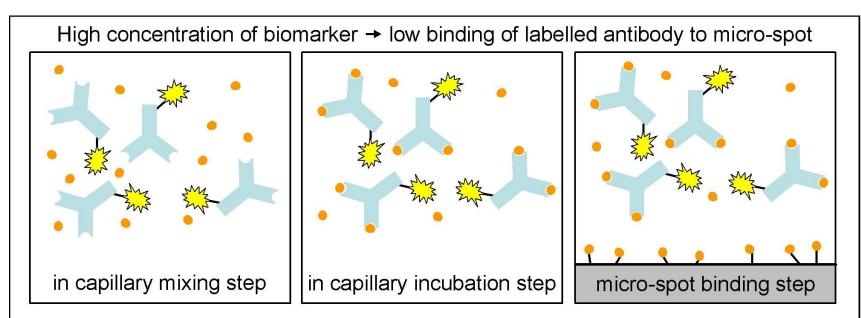
LMC overview

- Each sample approx 1g crushed Martian sample (drill core) from ExoMars SPDS (sample processing and distribution system)
- LMC has <u>four</u> single-use analysis modules each able to analyse one Martian relevant sample
- Each module performs
 - Organic molecule extraction into liquid solvent
 - Analysis of liquid extract by <u>multiplexed</u> immunoassay
 - Multiplexed immunoassay has up to 25 different assay – i.e. can detect up to 25 different targets (target classes) per sample
 - All modules to have same extraction conditions and immunoassays (baseline)
- Internal LMC conditions maintained >> 0°C and >> 200mbar

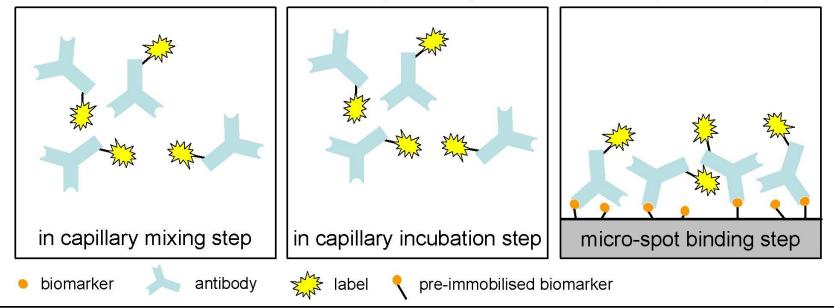
© Cranfield University 2011





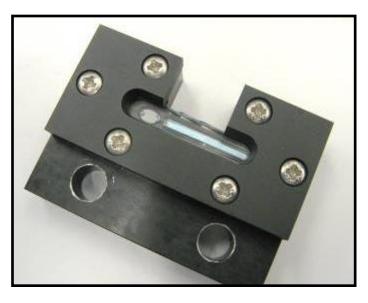

Example of micro-fluidic assay device

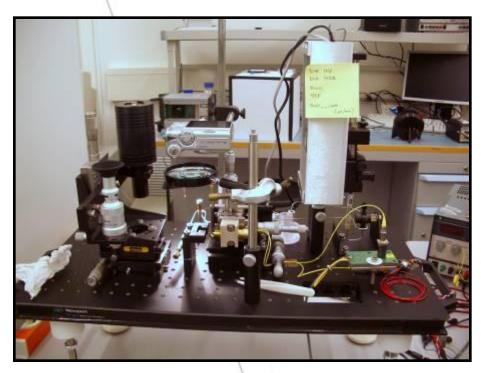
- Multiplexed micro-spot immunoassay arrays (~100 spots / ~25 assays per channel)
- Multiple single-use µ-fluidic channels (circa 2004)
- Real-time optical evanescent readout using fluorescent labelled reagents
- Lateral flow immunodiagnostic approach
- "Hi-tech pregnancy" test



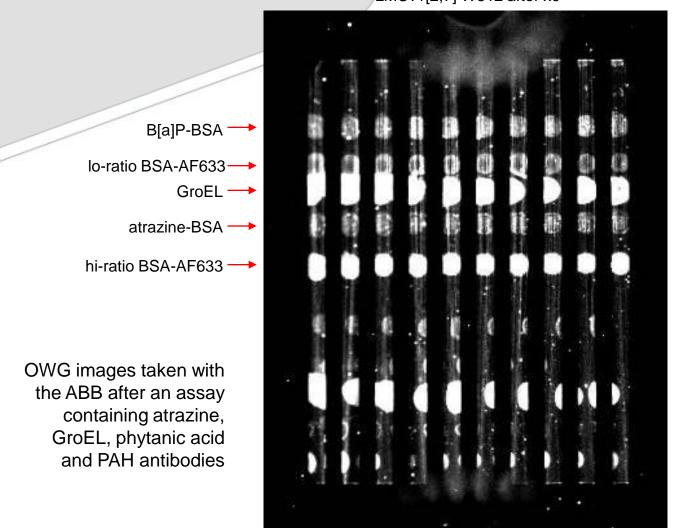
Schematic of micro-spot inhibition immunoassay format

Low concentration of biomarker - high binding of labelled antibody to micro-spot




Cranfield

Examples of current LMC assay breadboard components (circa 2009)

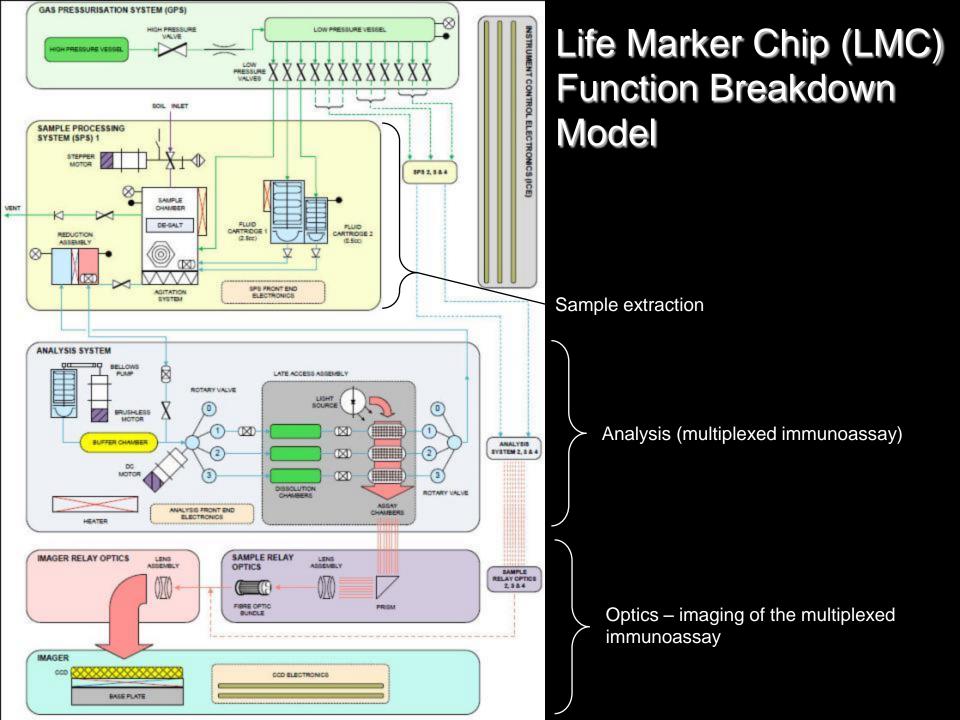


After assay image of optical waveguide LMC device showing multiplexed antibody binding

LMCv1[2,7] W312 after x0

Design for the Life Marker Chip (LMC) Flight Model (FM) (ca. early 2011)

Imperial College London


University of **Leicester**

LMC current status

LMC development on-going

- Immunoassay library development
 - Phage-display recombinant antibody development
 - Traditional antibody development / procurement
 - Integration of antibodies into LMC assay hardware
- Sample extraction development
 - Solvent extraction compatibility with diverse polar / apolar target extraction, matrices & antibody assays
 - Use of Martian sample analogues
- Flight hardware development
 - Flight model design
 - Accommodation within rover payload / ExoMars Analytical Drawer (ALD)
- Planetary protection & contamination control (PP&CC)
 - Cleaning, sterilisation and validation
 - PP&CC integration in FM assembly, test and verification (AIV)

HAM•E Cranfield Hypervelocity Artificial Meteoroid Experiment

A mission concept

http://www.cranfield.ac.uk

Hypervelocity Artificial Meteoroid Experiment

Questions