

LOFAR

Derek M^cKay-Bukowski

with thanks to LOFAR-UK, SEPnet, ASTRON, Sodankylä Geophysical Observatory, University Oulu, Oxford University, EISCAT Scientific Association, Radboud University Nijmegen, Max-Planck Institut, Onsala Space Observatory, Obs. Nançay, RAL & Chilbolton STFC, NERC, and many others.

High-Band Antenna tile (approx. 110-275 MHz)

- Snow impact, loading, lateral stresses, etc.
- No structural failures in 2500+ tiles deployed

Photo: D. McKay-Bukowski

1000

Low-Band Antenna aerial (approx. 10-90 MHz)

Photo: RAL Space

LOFAR station concept

Delay

You change the delays to change where you want to "look"

In a digital system, the signal is delayed in memory

And of course, computer memory is very fast

So you can change where it's looking...

... very quickly

 \odot

And that is pretty cool!

Digital

The data are digital

You can make copies of the data

And each copy can have a different delay

Thus, each copy is sensitive to a different direction

That means the telescope can "look" in different directions

 \odot

And that is also pretty cool!

Interference?

12-bit sampling

High-time resolution

Easily use adaptive nulling

Distributed antennas

 \odot

Europe is not a problem!

LOFAR network

Superterp, near Exloo, Netherlands

24 Core station, near Exloo, Netherlands Photo: ASTRON

12 (+3) Remote stations, this one near Gieten, Netherlands Photo: ASTRON / Aerofoto Eelde

DE601, Effelsberg, Germany Photo: Max-Planck-Institut für Radioastronomie

DE602, Unterweilenbach, Germany Photo: Rainer Hassfurter, Max-Planck Institut für Astrophysik

Some let a work

DE603, Tautenburg, Germany Photo: Thüringer Landessternwarte Tautenburg

DE604, Potsdam, Germany Photo: Leibniz-Institut für Astrophysik

FR606, Nançay, France Photo: I. Cognard, Station de Radioastronomie de Nançay

SE607, Onsala, Sweden Photo: Leif Helldner, Onsala Space Observatory * 1

E that I

a image

Zernikeborg, supercomputing centre Photo: XPeria2Day

(A STYLE

-UNTROL ROOM

LOFAR International Telescope Control Room, Dwingeloo, Netherlands

Photo: D. McKay-Bukowski, STFC/SEPnet

LOFAR

PLADIO OBSERVATORY

Network

The data are digital

Using Internet protocols

No tapes, no radio-links...

Just commercial networking

To provide a real-time telescope

 \odot

And that is pretty cool too!

High-resolution, low-frequency radio astronomy

Deep-Imaging

18 hrs 10° FoV 12" PSF 100 μJy

115-163 MHz

LBA Power (dB)

Solar

High Time-res. observing

Time (s)

Galactic emission

Non-astronomical applications

Options for non-conventional experiments and instrumentation

- Transient detection
- Cosmic ray research
- Artificial signal detection
- Riometry
- Rapid all-sky radio cameras
- De-dispersion engines
- Incoherent scatter radar
- LBL-antennas
- Infrasound
- Seismology
- Microbarometry
- **Distrometry**

J. Vierinen et al., 2012

Conclusion

- Rapid-build system ("flat-pack" concept, production-line efficiency... 0-100% in 6 mths)
- **Accessible** (knowledge base, full documentation, great for student involvement)
- **Low-maintenance** (robust design, no-moving parts, easy on operating costs)
- **Scalable** (multiple-size options, easily expandable, scales and integrates into the full network)
- **Flexible** (allows multiple experiments, simultaneous operation)
- **Common standard** (shared expertise, spare-parts pool, extensively tested)
- **New science area** (low-frequency + high-time resolution = new parameter space)
- Multi-discipline (applications to geology, agriculture, atmospherics, space weather, etc.)
- **Internet telescope** (remote access, software-based experiments)

LOFAR exploits developments in computing, networking and digital signal processing, and has opened up vast areas of unexplored scientific parameter space.