# Global Air Quality in 2020: Monitoring the Impacts of Wildfires and COVID-19



#### Mark Parrington

ECMWF, Copernicus Atmosphere Monitoring Service

@m\_parrington | mark.parrington@ecmwf.int

#### 16<sup>th</sup> Appleton Space Conference, 3 December 2020

With thanks to: Jerome Barre, Vincent-Henri Peuch, Richard Engelen, Johannes Flemming, Antje Inness, Melanie Ades, Anna Agusti-Panareda, Sebastien Garrigues, Zak Kipling, Miha Razinger, CAMS global and regional production teams













#### COPERNICUS AND ECMWF

Atmosphere Monitoring



Observations feeding into value-added Services

Sentinels

Copernicus is the European Union's operational Earth Observation and Monitoring programme, looking at our planet and its environment for the ultimate benefit of all citizens.

# **User-driven with free and unrestricted data access**

Service is implemented by ECMWF ECWMF is contributing to the Service





### What the Copernicus Atmosphere Monitoring Service has to offer

#### **Atmosphere** Monitoring













- The CAMS portfolio includes Earth Observation based information products about:
- past, current and near-future (forecasts) global atmospheric composition;
- the ozone layer;
- air quality in Europe;
- emissions and surface fluxes of key pollutants and greenhouse gases;
- solar radiation;
- climate radiative forcing.

This is delivered by a large European consortium (196 entities through 75 contracts).

https://atmosphere.copernicus.eu

opernicus European



# Why is CAMS needed?



Example: NO<sub>2</sub> tropospheric column from Copernicus Sentinel-5P (31/10/2018)

Observations are essential, but **direct use** is generally **limited**:

- gaps in space and time
- observed quantities may not be directly relevant (vertical column vs surface concentration)
- can be complex and numerous

#### What CAMS does:

- blend observations (satellite and non satellite) with model to provide a consistent 3D state
- forecasts, a few days ahead
- reanalyses over past years or decades



### **CAMS** Information Flow











IFS 40km (oper) / 80km (rean) Globe

CAMS main operational data assimilation and modelling systems





#### CAMS in action: Monitoring the Antarctic Ozone Hole



#### Reanalysis in action: 4 Decades of the Antarctic Ozone Hole

Atmosphere Monitoring

 $\mathcal{A}$ 



42 years of Antarctic ozone hole data merging ERA-5 and CAMS Reanalysis data

#### Reanalysis



Using a combination of observations and computer models to recreate historical climate conditions.

ECON European Commission

#### CAMS in action: Monitoring Boreal and Arctic Wildfires

Atmosphere Monitoring





Daily Total Fire Radiative Power for the Arctic Circle

June-August Total Wildfire CO<sub>2</sub> Emission for the Arctic Circle



mmission

- Global wildfires are monitored in near-real-time based on satellite observations of active fires (currently MODIS instruments on the NASA Terra and Aqua satellites).
- Daily total wildfire emissions were well above the 2003-2018 average throughout the summer north of the Arctic Circle - majority concentrated in Sakha Republic/Chukotka Autonomous Oblast, Russia.

## Hemispheric smoke transport

Atmosphere Monitoring

- CAMS provides information on a number of smoke-related tracers.
- Animation shows analyses (model + observations combined) of organic matter aerosol optical depth from 1 June to 30 September 2020.
- Smoke from wildfires in Siberia and within the Arctic Circle generally accumulated and recirculated over the region through the summer with some long-range transport across the north Pacific and Arctic Ocean.
- Note smoke from California and Colorado wildfires in September crossing North America and the North Atlantic.



# Air quality impacts of high latitude wildfires

Atmosphere Monitoring CAMS global reanalysis of atmospheric composition: https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=overview



 Climatology of surface PM2.5 concentration shows very limited low impact of wildfires on air quality in Siberian Arctic.

European

• Anomalies for 2019 and 2020 show direct impact of high latitude wildfires on surface air quality as activity increases and expands poleward.



# CAMS in action: CAMS COVID-19 Minisite

Atmosphere https://atmosphere.copernicus.eu/european-air-quality-information-support-covid-19-crisis

Maps and animations of the latest situation in Europe.

Forecast model estimate of reduction in air pollution is expected on a daily basis accounting for weather effects.



concentration may



Air pollution across Europe compared to 2017-2019 and as a function of lockdown measures.

How consistent are surface and satellite measurements?

CAMS currently contributes to a number of epidemiological studies trying to evaluate the links between air pollution and COVID-19 (effects of long- and short-term exposure; fine particulate matter as a potential vector in air for the virus?...)

曲 2020-05-11

NO2

Covid lockdow
Difference

Color scale upper limi

Reset cache

Reference Air Quality Simulation

CAMS regional air quality forecasts: Météo-France, Ineris (FR) CAMS COVID-19 scenario forecasts: Ineris (FR) CAMS website: ECMWF



#### S5P NO2 European Lockdown Overview

Atmosphere Monitoring



Many extratropical storms and strong positive T anomaly in Feb-Mar 2020

European

c/o Jerome Barre (ECMWF)



opernicus

European Commission

c/o Jerome Barre (ECMWF)

#### Impact of meteorology

Atmosphere Monitoring







- Changes in satellite observed NO<sub>2</sub> tropospheric column sampled over urban areas (population > 0.5 M).
- 2020 minus 2019 for before (1 Feb -15 Mar) and during (16 Mar - 30 Apr) lockdown.

change (%) 50

25

Population

2 M

8 M

-25 d

-50 Q

- Strong reduction (up to -75%) in NO<sub>2</sub> during lockdown but also before lockdown when the meteorological conditions were very different.
  - Inter-annual variability in meteorology needs to be considered.
- Machine Learning algorithm (based on Jan-May 2019 meteorology and CAMS regional surface NO<sub>2</sub> analyses) to normalize metorology gives clearer picture of lockdown impact on European air quality.

European

#### Summary

Atmosphere Monitoring

- ECMWF and the Copernicus Atmosphere Monitoring Service provides detailed information on global atmospheric composition and air quality.
- Combined information on wildfire activity, emissions and smoke transport monitors and provides context for pollution episodes in near-real-time.
  - 18 years of CAMS fire emissions and atmospheric composition reanalysis data help provide context for current wildfires.
  - The Arctic Circle has experienced increased number and duration of wildfires in 2019 and 2020 compared to previous years.
- Air quality analyses greatly benefit from combining meteorology and atmospheric composition.
  - Full understanding of changes in air quality due to COVID-19 restrictions requires detailed information on conditions.
- All Copernicus data are free and open for everyone to access.

http://atmosphere.copernicus.eu | @CopernicusECMWF | @CopernicusEU

