

Systems Engineering & Assessment Ltd: Improving Space Radar Instrument Performance Using Precision Transponders

Dr. Alan Fromberg Ground systems Programme Manager, Systems Engineering & Assessment Ltd

SEA House, Building 660 The Gardens Bristol Business Park, Coldharbour Lane, Bristol BS16 1EJ United Kingdom

Email:alan.fromberg@sea.co.ukTel:+44 1373 852 174

a Cohort plc company

Topics for This Presentation

Systems Engineering and Assessment Ltd

- Who we are and what we do
- Our preferred ways of collaborating

Transponder technologies

- Synthesised scattering targets to assure accurate radiometric calibration of space based radars
- Underlying backend can also be used as test equipment as part of radar calibration before launch.
- Much cheaper compact phase stable units as an alternative to corner reflectors to provide coherent targets for SAR Interferometry

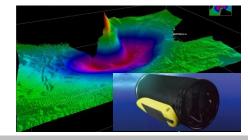
SEA Overview

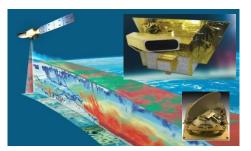
- Provider of specialist electronic systems for the Defence, Space and Transport markets
- Approx 250 Staff >80% professional engineers qualified to degree level or above
- Offices in Beckington and Bristol
- Six core areas of capability
 - High reliability systems for Space applications
 - Training, simulation and information systems
 - Communications
 - Research & Consultation
 - Managed Services
 - Sensor Processing Products

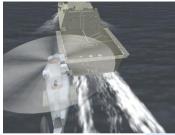
a Cohort plc company

SEA From submarines to space

data recorders & wireless sensing for equipment monitoring


digital traffic enforcement

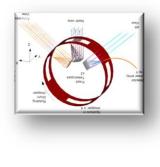

novel sensor networks

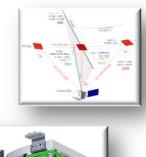

Sonar systems for sub-sea survey

Space flight instruments and electronics

Test and Calibration equipment

Simulation & visualisation of complex systems


Space flight Capability

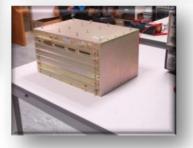


High reliability systems for space applications

Space Instruments

BroadBand Radiometer

Technology Development


- MEMS rate sensors / accelerometer
- RF Wireless
- Space nuclear (thermal) power sources
- Contactless power and data transfer
- Bio-containment technologies

Interface units for use on satellites and satellite instruments, including flight verified SpaceWire implementation

- Bepi Colombo
- Earthcare

Collaboration to Mutual Benefit

Assembling the right team to deliver a custom solution

- EarthCARE Broadband Radiometer with Rutherford Appleton Laboratories, Scisys, ESTL & Sula,
- MEMS Rate Sensor with Atlantic Inertial systems & Selex Galileo
- RF Wireless with Astrium SAS, Swedish Space Corporation University of Bristol and Agusta Westland
- Space Nuclear Power with National Nuclear Labs, Dalton Institute, University of Leicester, University of Oxford and RAL
- MSR Sample Receiving Facility and PP Research with Health Protection Agency, Bovis Lendlease, Natural History Museum, Open University and Imperial College London
- Passive microwave radiometer elements with Astrium UK, JRC Systems, RAL, RPG

• We are open to working together for a common interest

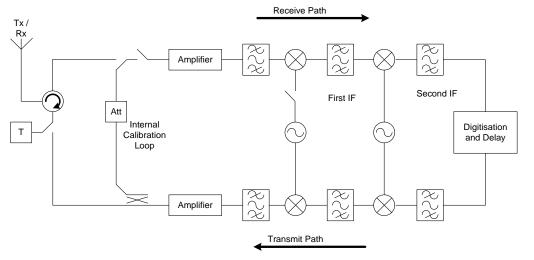
– Perhaps we could be working with you?

Radar Calibration Transponders

- Provide a simulated target for use in calibrating radar instruments
 - Capable of providing radar cross section of >100dBm²
 - Capture and record received chirp
 - Potential to delay, modify or substitute with test signals

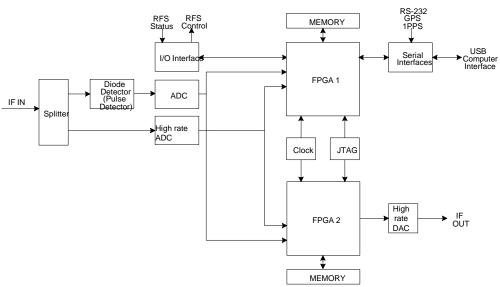
• Very powerful tool to characterise

- Radar electronics degradation
- Antenna pattern changes
- Atmospheric effects
- Relatively cheap infrastructure on the ground to improve radar performance
- Complimentary to ground test equipment



a Cohort plc company

Architecture Principles

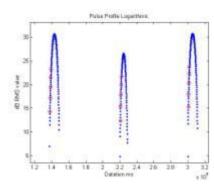


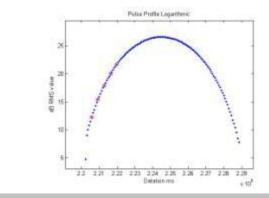
Digital back end

- Time synchronisation
- Pulse detection & capture
- Pulse chracterisation, manipulation & retransmission
- Generation of test signals
- Monitoring and Control

Instrument specific front end

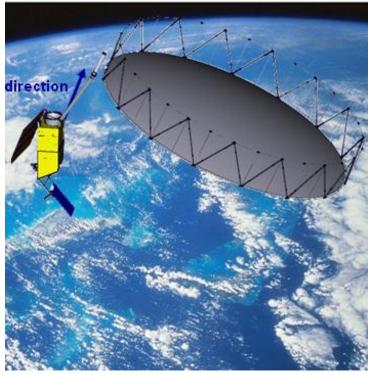
- receiving antenna,
- receiver & down converter
- transmitter & up converter
- transmitting antenna


a Cohort plc company


MetOp advanced scatterometer: calibration transponders

Operational Calibration Transponders

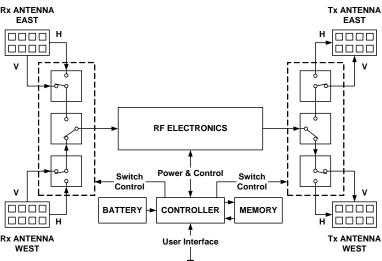
- three ground stations deployed across Turkey
- operational since April 2007
- autonomous operations; remote diagnostics via internet
- Achieved Amplitude stability is 98.10±0.05dBm²
 - Four times better than specification
 - Orders of magnitude better than ground targets
- Met product quality/fidelity exceed those of US equivalent satellites.
- Post Delivery Support to EumetSat for life of MetOp satellites


BIOMASS & COREH₂O Calibration

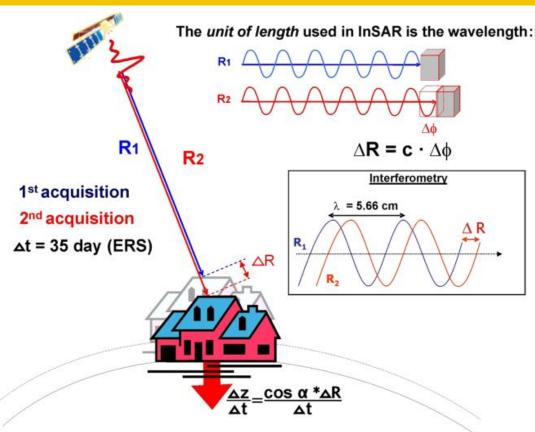
- SEA are developing both external calibration concepts
- BIOMASS (P Band for vegetation)
 - Very large antenna will offer calibration challenge for characterisation
 - Specific approach required to solve lonospheric disturbance problems
 - Dual frequency approach (similar to GPS) being studied
 - Direct measurement using top side sounder would exceed mass budget
 - Approach potentially applicable for L band

COREH₂O (Ku & X for snow & ice)

- Antenna sizes much more manageable
- Site selection to optimise performance (atmospheric humidity & precipitation)


Artists impression of BIOMASS: Some change in antenna pattern might reasonably be anticipated through in-orbit lifetime!

ReflecX Compact Active transponder


SEA

- Low cost, smaller alternative to corner reflectors for use in Synthetic Aperture Radar Interferometry (InSAR) at C-band
 - 45cm long and 1/10th of the weight of an equivalent corner reflector (32dBm²⁾
- Used for landslide monitoring, highway & reservoir subsidence, pipelines etc
- Several field trials have confirmed phase stability, and robust for >18months
- I²GPS EU-FP7 project has integrated a CAT with a GPS receiver
 - Targeting pre-cursors to mass debris flows in Slovenian Alps
 - Technology permits simultaneous measurements, phase centres referred to a common geodetic reference

Persistent Scatterer Interferometry & Compact Active Transponders

- Compact Active Transponders mimic the response of a much larger target
 - Have easily identifiable phase centre as a reference for a common baseline with other surveys

SAR interferometry identifies radar line of sight displacements of <5mm

S·E·A

- Between radar satellite overpasses
- Needs reliable persistent scatterers

Example From Previous Trial

• Units need to be installed in the zone of interest.

- With clear line of sight to satellite (30-70°, East-West)
- Mounted securely to "the target"
- One reference device off the area of instability

• Typical duration 6-12 months

- Periodic visits to reprogramme CATS and clear vegetation
- Aperiodic visits within 24day window if anomalies seen

Potential issues/ hazards

- Radio interference at 5.4GHz
- Trip hazard can be protected by non-conductive fence if needed
- Power supply is 6V battery, so no shock risk

Corner Reflectors versus Compact Active Transponders

SEA

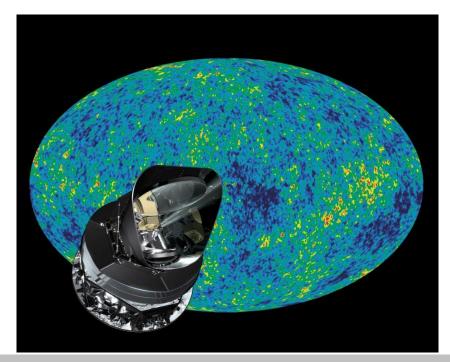
Corner Reflectors

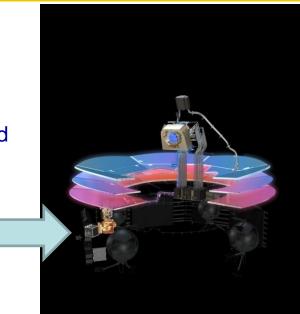
- Typically large metal tri-hedrals
- Need to be tightly aligned (thermal distortions, birds nests and theft present a problem)
- Inherently phase stable

Compact Active Transponders

- Much smaller than their effective radar cross-section
- Have to include clever electronics to stay phase stable
- Electronics currently only available at C-band (Envisat, Radarsat, Sentinel1)

Thank you for your attention




a Cohort plc company

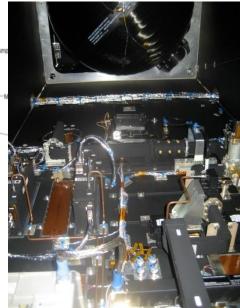
Example : Planck 4K cooler drive electronics

- Critical Equipment (SPF) on €600M space mission
- Operational in orbit since May 2009 and performing a factor of x2 better than specification on vibration cancellation.
- SEA developed hardware, software, system analysis and build

a Cohort plc company

'SiREUS' MEMS rate sensor

- Specialised 'gyro' for satellites used to point antennas/ instruments at target areas. Historically have been expensive and heavy ring-laser units.
- Improvements in star-reference systems provide scope for new technology based on well-proven "MEMS" technology.
- SEA-led development programme funded by ESA (€4M) special sensor technology > x10 better than 'best available' Now a Selex 'standard product'
- Currently flying on CryoSat 2 strong interest Worldwide


	MEMS	Ring laser
Mass	700g	3-4Kgs
Power	5W	35W
Exportability	No restriction	US ITAR
Cost	€200k	€500k

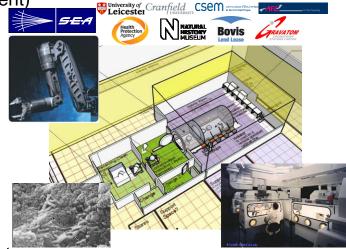
Als Atlantic Inertial Systems

a Cohort plc company

MSR Sample Receiving Facility

Objectives

- Prove samples offer minimal Biohazard prior to transfer to Scientific Curation Facility(ies) (COSPAR requirement) <u>and</u>
- Protect scientific integrity of samples (scientific requirement)


Teaming

- Health Protection Agency
- Universities
- Natural History Museum
- Specialist architects for sterile/secure facilities
- Robotics and remote manipulations experts

Summary

- Requirements and preliminary design
- Ran a very successful workshop at ESTEC
 - Space (PP) Scientific & Biocontainment communities;
 - Addressed opening, curation and biohazard assessment;
 - Critically assessed requirements & identified key issues.
- Robotic handling preferred to suited laboratories for sample level manipulation
- For cost-effectiveness should be co-located with (or enclosed within) a BSL4 facility
- Sample opening requirements should be placed on the MSR biocontainer sealing system

• Participation in EU workshop/ESA-UK Space Agency workshop etc

RF wireless: summary

Benefit/ Proposition

- high integrity wireless sensors for difficult environments
- very low power sensor networks, connectivity to standards
- ITAR free and radiation tolerant
- not 'COTS' high integrity and power reduced

Innovations/ Technology

- network architectures, topology and standards implementation
- hardening and validation of wireless available IP cores

Financing

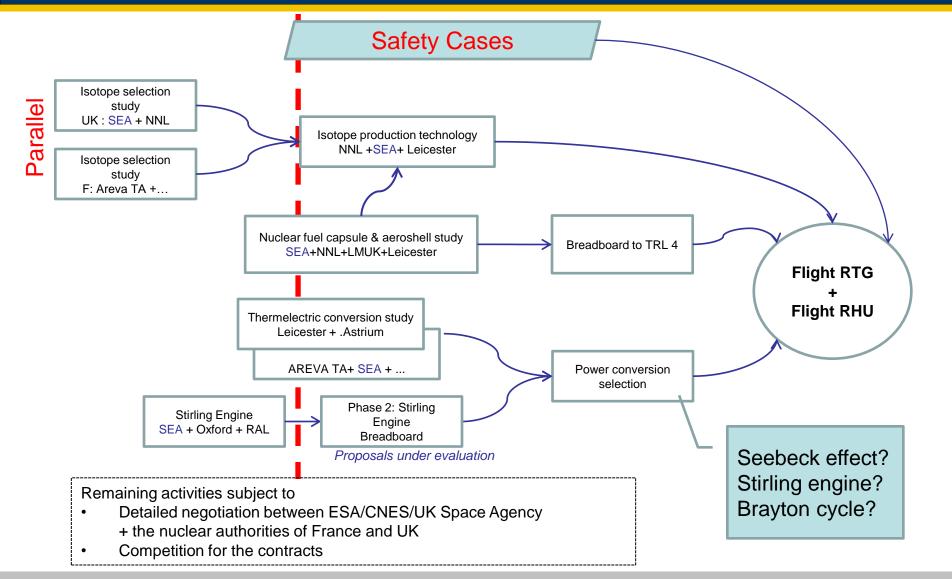
ESA (>£1M) fully funded contract with 'hard' deliverables,

Exploitation

- high integrity integration, test and flight environments
- medical and nuclear applications

Parallel/ complementary developments

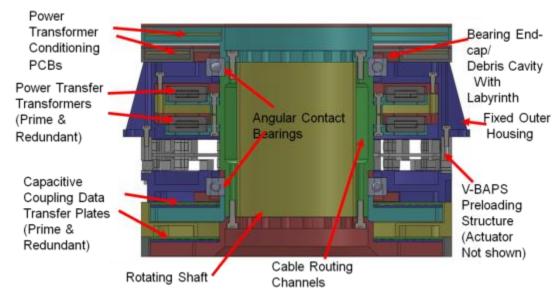
- wireless usage monitoring (for landing gear fatigue)
- wireless fuel gauging (wing tanks)
- high performance, low power MEMS sensors



a Cohort plc company

Space Nuclear Power -Roadmap

Contactless Power and Data Transfer



Key requirements

- Transfer 200W power with >95% efficiency
- Full duplex data transfer at 5Mbits/s with a BER of 10-9
- Mass, 8kg maximum
- Envelope:
 - External diameter Ø250mm max
 - Central clearance through hole Ø50mm min
 - Height 250mm max

Application

 Rotating instruments such as MWI/ICI for MetOp 2G

 DevelopmentTeam SEA, ESR, Sula Systems